Sparse Bayesian learning-based data-aided channel estimation in STTC MIMO systems

Amrita Mishra, Arnab K. Pal, A. Jagannatham, K. Rajawat
{"title":"Sparse Bayesian learning-based data-aided channel estimation in STTC MIMO systems","authors":"Amrita Mishra, Arnab K. Pal, A. Jagannatham, K. Rajawat","doi":"10.1109/ATNAC.2014.7020902","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a sparse multipath representation of the multiple-input multiple-output (MIMO) channel matrix in terms of an overcomplete dictionary consisting of the basis spatial signature matrices which correspond to various directional cosines at the transmit and receive antenna arrays. Based on the sparse Bayesian learning (SBL) framework, we exploit the spatially sparse representation of the MIMO channel and develop a novel pilot-based channel estimation scheme for space-time trellis coded (STTC) MIMO systems. Further, we propose an enhanced SBL-based data-aided channel estimation technique utilizing the expectation-maximization (EM) framework. We demonstrate that this can be derived as an optimal minimum mean squared error (MMSE) channel estimate in the E-step followed by a modified path metric-based maximum likelihood (ML) STTC decoder in the M-step. We also derive the Bayesian Cramer-Rao bounds (BCRBs) for the SBL-based pilot and data-aided channel estimation schemes. Finally, we present simulation results to demonstrate the performance of the proposed techniques and validate the analytical bounds.","PeriodicalId":396850,"journal":{"name":"2014 Australasian Telecommunication Networks and Applications Conference (ATNAC)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Australasian Telecommunication Networks and Applications Conference (ATNAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATNAC.2014.7020902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we consider a sparse multipath representation of the multiple-input multiple-output (MIMO) channel matrix in terms of an overcomplete dictionary consisting of the basis spatial signature matrices which correspond to various directional cosines at the transmit and receive antenna arrays. Based on the sparse Bayesian learning (SBL) framework, we exploit the spatially sparse representation of the MIMO channel and develop a novel pilot-based channel estimation scheme for space-time trellis coded (STTC) MIMO systems. Further, we propose an enhanced SBL-based data-aided channel estimation technique utilizing the expectation-maximization (EM) framework. We demonstrate that this can be derived as an optimal minimum mean squared error (MMSE) channel estimate in the E-step followed by a modified path metric-based maximum likelihood (ML) STTC decoder in the M-step. We also derive the Bayesian Cramer-Rao bounds (BCRBs) for the SBL-based pilot and data-aided channel estimation schemes. Finally, we present simulation results to demonstrate the performance of the proposed techniques and validate the analytical bounds.
基于稀疏贝叶斯学习的STTC MIMO系统数据辅助信道估计
在本文中,我们考虑了多输入多输出(MIMO)信道矩阵的稀疏多径表示,该表示是用一个由基本空间特征矩阵组成的过完备字典来表示的,这些特征矩阵对应于发射和接收天线阵列的各种方向余弦。此外,我们提出了一种增强的基于sbl的数据辅助信道估计技术,利用期望最大化(EM)框架。我们证明,这可以在e步中导出为最优最小均方误差(MMSE)信道估计,然后在m步中导出修改的基于路径度量的最大似然(ML) STTC解码器。我们还推导了基于sbl的导频和数据辅助信道估计方案的贝叶斯Cramer-Rao界(bcrb)。最后,我们给出了仿真结果来证明所提出的技术的性能并验证了分析界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信