Kaustubh R. Joshi, M. Hiltunen, R. Schlichting, W. Sanders, A. Agbaria
{"title":"Online model-based adaptation for optimizing performance and dependability","authors":"Kaustubh R. Joshi, M. Hiltunen, R. Schlichting, W. Sanders, A. Agbaria","doi":"10.1145/1075405.1075422","DOIUrl":null,"url":null,"abstract":"Constructing adaptive software that is capable of changing behavior at runtime is a challenging software engineering problem. However, the problem of determining when and how such a system should adapt, i.e., the system's adaptation policy, can be even more challenging. To optimize the behavior of a system over its lifetime, the policy must often take into account not only the current system state, but also the anticipated future behavior of the system. This paper presents a systematic approach based on using Markov Decision Processes to model the system and to generate optimal adaptation policies for it. In our approach, we update the model on-line based on system measurements and generate updated adaptation policies at runtime when necessary. We present the general approach and then outline its application to a distributed message dissemination system based on AT&T's iMobile platform.","PeriodicalId":326554,"journal":{"name":"Workshop on Self-Healing Systems","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Self-Healing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1075405.1075422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Constructing adaptive software that is capable of changing behavior at runtime is a challenging software engineering problem. However, the problem of determining when and how such a system should adapt, i.e., the system's adaptation policy, can be even more challenging. To optimize the behavior of a system over its lifetime, the policy must often take into account not only the current system state, but also the anticipated future behavior of the system. This paper presents a systematic approach based on using Markov Decision Processes to model the system and to generate optimal adaptation policies for it. In our approach, we update the model on-line based on system measurements and generate updated adaptation policies at runtime when necessary. We present the general approach and then outline its application to a distributed message dissemination system based on AT&T's iMobile platform.