White Blood Cell Image Generation using Deep Convolutional Generative Adversarial Network

Dwiti Pandya, Tejal Patel, D. Singh
{"title":"White Blood Cell Image Generation using Deep Convolutional Generative Adversarial Network","authors":"Dwiti Pandya, Tejal Patel, D. Singh","doi":"10.1109/ICAISS55157.2022.10010838","DOIUrl":null,"url":null,"abstract":"White blood cells (WBCs) are a crucial component of the human immune system in medicine. The traditional method of white blood cell classification is to segment the cells, extract features, and then classify them. Insufficient data or unbalanced samples can also cause a low classification accuracy of a deep learning model used for medical diagnosis. The deep convolutional generative adversarial network (DCGAN) is the base of this study and is employed to produce images. The experiment show that the model gives 99.44% accuracy for generation of WBC blood cell image.","PeriodicalId":243784,"journal":{"name":"2022 International Conference on Augmented Intelligence and Sustainable Systems (ICAISS)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Augmented Intelligence and Sustainable Systems (ICAISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAISS55157.2022.10010838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

White blood cells (WBCs) are a crucial component of the human immune system in medicine. The traditional method of white blood cell classification is to segment the cells, extract features, and then classify them. Insufficient data or unbalanced samples can also cause a low classification accuracy of a deep learning model used for medical diagnosis. The deep convolutional generative adversarial network (DCGAN) is the base of this study and is employed to produce images. The experiment show that the model gives 99.44% accuracy for generation of WBC blood cell image.
基于深度卷积生成对抗网络的白细胞图像生成
在医学上,白细胞是人体免疫系统的重要组成部分。传统的白细胞分类方法是对细胞进行分割,提取特征,然后进行分类。数据不足或样本不平衡也会导致用于医学诊断的深度学习模型的分类精度较低。深度卷积生成对抗网络(DCGAN)是本研究的基础,用于生成图像。实验表明,该模型对白细胞图像的生成准确率为99.44%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信