Research on Transmission Line Defect Detection Based on Adaptive Federated Learning

H. Cai, Gang Liu, Ziqi Zeng, Fangming Deng
{"title":"Research on Transmission Line Defect Detection Based on Adaptive Federated Learning","authors":"H. Cai, Gang Liu, Ziqi Zeng, Fangming Deng","doi":"10.1109/ICARCE55724.2022.10046524","DOIUrl":null,"url":null,"abstract":"The existing deep learning transmission line detection technology with cloud computing is faced with problems such as slow response speed, high communication cost, and difficult to obtain data scattered, as well as the huge amount of data, which causes huge pressure on cloud storage capacity and processing capacity. This paper proposes a transmission line defect detection technology based on adaptive federated learning (FL). Its advantage is that data does not need to be uploaded and shared, which not only reduces communication costs, but also improves data security. In this paper, an adaptive algorithm is added to the original FL algorithm, which can adaptively change the data volume of the next round of training according to the training effect of each round and the local training energy consumption, so as to achieve the optimal number of communication between the two, which greatly reduces the Improve training speed and reduce communication costs. Through experimental analysis, the model training efficiency of the adaptive FL proposed in this paper is 70% higher than that of the centralized cloud computing, and the computing cost is saved by about 40%.","PeriodicalId":416305,"journal":{"name":"2022 International Conference on Automation, Robotics and Computer Engineering (ICARCE)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Automation, Robotics and Computer Engineering (ICARCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARCE55724.2022.10046524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The existing deep learning transmission line detection technology with cloud computing is faced with problems such as slow response speed, high communication cost, and difficult to obtain data scattered, as well as the huge amount of data, which causes huge pressure on cloud storage capacity and processing capacity. This paper proposes a transmission line defect detection technology based on adaptive federated learning (FL). Its advantage is that data does not need to be uploaded and shared, which not only reduces communication costs, but also improves data security. In this paper, an adaptive algorithm is added to the original FL algorithm, which can adaptively change the data volume of the next round of training according to the training effect of each round and the local training energy consumption, so as to achieve the optimal number of communication between the two, which greatly reduces the Improve training speed and reduce communication costs. Through experimental analysis, the model training efficiency of the adaptive FL proposed in this paper is 70% higher than that of the centralized cloud computing, and the computing cost is saved by about 40%.
基于自适应联邦学习的输电线路缺陷检测研究
现有的基于云计算的深度学习传输线检测技术面临着响应速度慢、通信成本高、数据分散难以获取等问题,且数据量巨大,对云存储容量和处理能力造成巨大压力。提出了一种基于自适应联邦学习(FL)的输电线路缺陷检测技术。它的优点是数据不需要上传和共享,既降低了通信成本,又提高了数据的安全性。本文在原FL算法的基础上增加了一种自适应算法,可以根据每轮训练效果和局部训练能耗自适应改变下一轮训练的数据量,从而达到两者之间的最优通信次数,大大降低了训练速度的提高和通信成本的降低。通过实验分析,本文提出的自适应FL的模型训练效率比集中式云计算提高70%,计算成本节约约40%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信