THE USE OF OPTIMAL ESTIMATION FOR GROSS ERROR DETECTION IN DATABASES OF SPATIALLY CORRELATED DATA

C. Tscherning
{"title":"THE USE OF OPTIMAL ESTIMATION FOR GROSS ERROR DETECTION IN DATABASES OF SPATIALLY CORRELATED DATA","authors":"C. Tscherning","doi":"10.1615/1-56700-002-9.170","DOIUrl":null,"url":null,"abstract":"For data, which are associated with a spatial position (location), it is very often so that data are spatially correlated. The distance plays the role time does in time series, while the directional dependence often is small or may be disregarded. This may be used to detect fross errors, using tools developed for optimal estimation in stochastic processes. Here methods like optimal linear prediction makes it possible also to estimate the error of prediction. A comparison of the difference between the observed and the predicted value with the error estimate, may then be used to identify a possible gross error","PeriodicalId":376382,"journal":{"name":"Proceeding of Data For Discovery","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceeding of Data For Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/1-56700-002-9.170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

For data, which are associated with a spatial position (location), it is very often so that data are spatially correlated. The distance plays the role time does in time series, while the directional dependence often is small or may be disregarded. This may be used to detect fross errors, using tools developed for optimal estimation in stochastic processes. Here methods like optimal linear prediction makes it possible also to estimate the error of prediction. A comparison of the difference between the observed and the predicted value with the error estimate, may then be used to identify a possible gross error
利用最优估计方法检测空间相关数据数据库中的粗差
对于与空间位置(位置)相关联的数据,通常使数据在空间上相关。距离在时间序列中起着时间的作用,而方向依赖性往往很小或可以忽略。这可以用来检测交叉误差,使用在随机过程中开发的最优估计工具。在这里,最优线性预测等方法也使估计预测误差成为可能。将观测值与预测值之间的差值与误差估计进行比较,可用于确定可能的粗误差
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信