Deep learning-based Phase Retrieval Scheme for Minimum Phase Signal Recovery

Daniele Orsuti, C. Antonelli, A. Chiuso, M. Santagiustina, A. Mecozzi, A. Galtarossa, L. Palmieri
{"title":"Deep learning-based Phase Retrieval Scheme for Minimum Phase Signal Recovery","authors":"Daniele Orsuti, C. Antonelli, A. Chiuso, M. Santagiustina, A. Mecozzi, A. Galtarossa, L. Palmieri","doi":"10.1109/ICOP56156.2022.9911725","DOIUrl":null,"url":null,"abstract":"We propose a deep learning-based phase retrieval scheme to recover the phase of a minimum-phase signal after single-photodiode direct-detection. We show that, by properly generating the training data for the deep learning model, the proposed scheme can jointly perform full-field recovery and compensate for propagation-related linear and nonlinear impairments. Simulation results in relevant transmission system settings show that the proposed scheme relaxes the carrier-to-signal power ratio (CSPR) requirements by 2.8-dB and achieves 1.8-dB better receiver sensitivity while being on average 6 times computationally faster than the conventional 4-fold upsampled Kramers-Kronig receiver aided with digital-back-propagation.","PeriodicalId":227957,"journal":{"name":"2022 Italian Conference on Optics and Photonics (ICOP)","volume":"518 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Italian Conference on Optics and Photonics (ICOP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOP56156.2022.9911725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a deep learning-based phase retrieval scheme to recover the phase of a minimum-phase signal after single-photodiode direct-detection. We show that, by properly generating the training data for the deep learning model, the proposed scheme can jointly perform full-field recovery and compensate for propagation-related linear and nonlinear impairments. Simulation results in relevant transmission system settings show that the proposed scheme relaxes the carrier-to-signal power ratio (CSPR) requirements by 2.8-dB and achieves 1.8-dB better receiver sensitivity while being on average 6 times computationally faster than the conventional 4-fold upsampled Kramers-Kronig receiver aided with digital-back-propagation.
基于深度学习的最小相位信号恢复相位检索方案
我们提出了一种基于深度学习的相位恢复方案,用于恢复单光电二极管直接检测后最小相位信号的相位。研究表明,通过适当地生成深度学习模型的训练数据,所提出的方案可以联合执行全场恢复并补偿与传播相关的线性和非线性损伤。在相关传输系统设置下的仿真结果表明,该方案将载波与信号功率比(CSPR)的要求降低了2.8 db,提高了1.8 db的接收灵敏度,同时平均计算速度比传统的4倍上采样Kramers-Kronig接收机提高了6倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信