A modular greatest common divisor algorithm for gaussian polynomials

ACM '75 Pub Date : 1900-01-01 DOI:10.1145/800181.810340
B. Caviness, M. Rothstein
{"title":"A modular greatest common divisor algorithm for gaussian polynomials","authors":"B. Caviness, M. Rothstein","doi":"10.1145/800181.810340","DOIUrl":null,"url":null,"abstract":"In this paper the Brown-Collins modular greatest common divisor algorithm for polynomials in Z[x<subscrpt>1</subscrpt>,...,x<subscrpt>v</subscrpt>], where Z denotes the ring of rational integers, is generalized to apply to polynomials in G[x<subscrpt>1</subscrpt>,...,x<subscrpt>v</subscrpt>], where G denotes the ring of Gaussian integers, i.e., complex numbers of the form a + ib where a, b are in Z\n Under certain simplifying assumptions, a function is found that dominates the maximum computing time of the new god algorithm.","PeriodicalId":447373,"journal":{"name":"ACM '75","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM '75","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/800181.810340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper the Brown-Collins modular greatest common divisor algorithm for polynomials in Z[x1,...,xv], where Z denotes the ring of rational integers, is generalized to apply to polynomials in G[x1,...,xv], where G denotes the ring of Gaussian integers, i.e., complex numbers of the form a + ib where a, b are in Z Under certain simplifying assumptions, a function is found that dominates the maximum computing time of the new god algorithm.
高斯多项式的模最大公约数算法
本文提出了Z[x1,…]中多项式的Brown-Collins模最大公约数算法。,xv],其中Z为有理数环,推广应用于G[x1,…]中的多项式。,xv],其中G为高斯整数环,即形式为a + ib的复数,其中a、b均在Z中。在一定的简化假设下,找到了一个支配新god算法最大计算时间的函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信