Automatic recognition of fetal standard plane in ultrasound image

B. Lei, Liu Zhuo, Siping Chen, Shengli Li, Dong Ni, Tianfu Wang
{"title":"Automatic recognition of fetal standard plane in ultrasound image","authors":"B. Lei, Liu Zhuo, Siping Chen, Shengli Li, Dong Ni, Tianfu Wang","doi":"10.1109/ISBI.2014.6867815","DOIUrl":null,"url":null,"abstract":"Detection and recognition of standard plane automatically during the course of US examination is an effective method for diagnosis of fetal development. In this paper, an automatic algorithm is developed to address the issue of recognition of standard planes (i.e. axial, coronal and sagittal planes) in the fetal ultrasound (US) image. The dense sampling feature transform descriptor (DSIFT) with aggregating vector method (i.e. fish vector (FV)) is explored for feature extraction. The learning and recognition of the planes have been implemented by support vector machine (SVM) classifier. Experimental results on the collected data demonstrate that high recognition accuracy is obtained.","PeriodicalId":440405,"journal":{"name":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","volume":"409 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2014.6867815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Detection and recognition of standard plane automatically during the course of US examination is an effective method for diagnosis of fetal development. In this paper, an automatic algorithm is developed to address the issue of recognition of standard planes (i.e. axial, coronal and sagittal planes) in the fetal ultrasound (US) image. The dense sampling feature transform descriptor (DSIFT) with aggregating vector method (i.e. fish vector (FV)) is explored for feature extraction. The learning and recognition of the planes have been implemented by support vector machine (SVM) classifier. Experimental results on the collected data demonstrate that high recognition accuracy is obtained.
超声图像中胎儿标准平面的自动识别
超声检查过程中标准平面的自动检测和识别是诊断胎儿发育的有效方法。本文开发了一种自动算法来解决胎儿超声图像中标准平面(即轴、冠状和矢状面)的识别问题。探讨了基于聚合向量法(即鱼向量法)的密集采样特征变换描述子(DSIFT)进行特征提取。通过支持向量机分类器实现对平面的学习和识别。实验结果表明,该方法具有较高的识别精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信