B. Lei, Liu Zhuo, Siping Chen, Shengli Li, Dong Ni, Tianfu Wang
{"title":"Automatic recognition of fetal standard plane in ultrasound image","authors":"B. Lei, Liu Zhuo, Siping Chen, Shengli Li, Dong Ni, Tianfu Wang","doi":"10.1109/ISBI.2014.6867815","DOIUrl":null,"url":null,"abstract":"Detection and recognition of standard plane automatically during the course of US examination is an effective method for diagnosis of fetal development. In this paper, an automatic algorithm is developed to address the issue of recognition of standard planes (i.e. axial, coronal and sagittal planes) in the fetal ultrasound (US) image. The dense sampling feature transform descriptor (DSIFT) with aggregating vector method (i.e. fish vector (FV)) is explored for feature extraction. The learning and recognition of the planes have been implemented by support vector machine (SVM) classifier. Experimental results on the collected data demonstrate that high recognition accuracy is obtained.","PeriodicalId":440405,"journal":{"name":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","volume":"409 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2014.6867815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
Detection and recognition of standard plane automatically during the course of US examination is an effective method for diagnosis of fetal development. In this paper, an automatic algorithm is developed to address the issue of recognition of standard planes (i.e. axial, coronal and sagittal planes) in the fetal ultrasound (US) image. The dense sampling feature transform descriptor (DSIFT) with aggregating vector method (i.e. fish vector (FV)) is explored for feature extraction. The learning and recognition of the planes have been implemented by support vector machine (SVM) classifier. Experimental results on the collected data demonstrate that high recognition accuracy is obtained.