Improving performance of multithreshold decoder for self-orthogonal codes

A. Baranchikov, N. N. Grinchenko, G. Ovechkin
{"title":"Improving performance of multithreshold decoder for self-orthogonal codes","authors":"A. Baranchikov, N. N. Grinchenko, G. Ovechkin","doi":"10.1109/MECO.2016.7525744","DOIUrl":null,"url":null,"abstract":"The article discusses self-orthogonal error-correcting codes (SOC) for the decoding of which multithreshold algorithms (MTD) are usually used. To decode SOC the algorithms used for low-density parity-check (LDPC) codes can also be applied. The article shows that using a min-sum decoder for SOC over a channel with additive white Gaussian noise (AWGN) in case of binary phase shift keying allows to receive additional coding gain about 1..1,5 dB in comparison with MTD usage. At the same time computing complexity in a min-sum algorithm turns out to be 6...7 times higher than MTD. For SOC decoding the work offers a combined decoder including the elements of MTD and min-sum algorithms. The first several decoding iterations require the usage of min-sum decoder while later MTD is added. The results of offered decoder simulation show about 1 dB increase of coding gain in comparison with MTD for SOC over a channel with AWGN with binary phase shift keying in case of twofold increase of computing complexity. The gain received depends on the SOC used, the number of min-sum decoding iterations and MTD.","PeriodicalId":253666,"journal":{"name":"2016 5th Mediterranean Conference on Embedded Computing (MECO)","volume":"202 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 5th Mediterranean Conference on Embedded Computing (MECO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MECO.2016.7525744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The article discusses self-orthogonal error-correcting codes (SOC) for the decoding of which multithreshold algorithms (MTD) are usually used. To decode SOC the algorithms used for low-density parity-check (LDPC) codes can also be applied. The article shows that using a min-sum decoder for SOC over a channel with additive white Gaussian noise (AWGN) in case of binary phase shift keying allows to receive additional coding gain about 1..1,5 dB in comparison with MTD usage. At the same time computing complexity in a min-sum algorithm turns out to be 6...7 times higher than MTD. For SOC decoding the work offers a combined decoder including the elements of MTD and min-sum algorithms. The first several decoding iterations require the usage of min-sum decoder while later MTD is added. The results of offered decoder simulation show about 1 dB increase of coding gain in comparison with MTD for SOC over a channel with AWGN with binary phase shift keying in case of twofold increase of computing complexity. The gain received depends on the SOC used, the number of min-sum decoding iterations and MTD.
改进自正交码多阈值解码器的性能
本文讨论了自正交纠错码(SOC)的译码方法,其中多阈值算法(MTD)是常用的译码方法。为了解码SOC,还可以应用用于低密度奇偶校验(LDPC)代码的算法。本文表明,在二进制相移键控的情况下,在具有加性高斯白噪声(AWGN)的信道上使用最小和解码器的SOC允许接收大约1的额外编码增益。与MTD使用量相比,为1.5 dB。同时,最小和算法的计算复杂度为6…比MTD高7倍。对于SOC解码,工作提供了一个组合的解码器,包括MTD和最小和算法的元素。前几次解码迭代需要使用最小和解码器,而随后添加MTD。所提供的解码器仿真结果表明,在计算复杂度增加两倍的情况下,在具有二进制相移键控的AWGN信道上,SOC的编码增益比MTD增加了约1 dB。接收到的增益取决于所使用的SOC,最小和解码迭代的数量和MTD。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信