Weijie Ren, Min Han, Jun Wang, Danxue Wang, Tieshan Li
{"title":"Efficient feature extraction framework for EEG signals classification","authors":"Weijie Ren, Min Han, Jun Wang, Danxue Wang, Tieshan Li","doi":"10.1109/ICICIP.2016.7885895","DOIUrl":null,"url":null,"abstract":"Feature extraction and classification for EEG signals are key technologies in medical applications. This paper proposes an efficient feature extraction framework that combines hybrid feature extraction and feature selection method. In order to fully exploit information from EEG signals, several feature extraction methods of different types are applied, which are autoregressive model, discrete wavelet transform, wavelet packet transform and sample entropy. After information fusion, feature selection methods are introduced to deal with redundant and irrelevant information, which is advantageous to classification. In this phase, global optimization strategy based on binary particle swarm optimization (BPSO) is presented to enhance the performance of feature selection. To evaluate the results of feature extraction, experiments of class separability are conducted. Classification results on EEG dataset of university of Bonn show the superiority of the proposed method.","PeriodicalId":226381,"journal":{"name":"2016 Seventh International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"188 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Seventh International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP.2016.7885895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
Feature extraction and classification for EEG signals are key technologies in medical applications. This paper proposes an efficient feature extraction framework that combines hybrid feature extraction and feature selection method. In order to fully exploit information from EEG signals, several feature extraction methods of different types are applied, which are autoregressive model, discrete wavelet transform, wavelet packet transform and sample entropy. After information fusion, feature selection methods are introduced to deal with redundant and irrelevant information, which is advantageous to classification. In this phase, global optimization strategy based on binary particle swarm optimization (BPSO) is presented to enhance the performance of feature selection. To evaluate the results of feature extraction, experiments of class separability are conducted. Classification results on EEG dataset of university of Bonn show the superiority of the proposed method.