Spektrum Laplace pada graf kincir angin berarah (Q_k^3)

Melly Amaliyanah, Siti Rahmah Nurshiami, Triyani Triyani
{"title":"Spektrum Laplace pada graf kincir angin berarah (Q_k^3)","authors":"Melly Amaliyanah, Siti Rahmah Nurshiami, Triyani Triyani","doi":"10.19184/mims.v22i2.31128","DOIUrl":null,"url":null,"abstract":"Suppose that 0 = µ0 ≤ µ1 ≤ ... ≤ µn-1 are eigen values of a Laplacian matrix graph with n vertices and m(µ0), m(µ1), …, m(µn-1) are the multiplicity of each µ, so the Laplacian spectrum of a graph can be expressed as a matrix 2 × n whose line elements are µ0, µ1, …, µn-1 for the first row, and m(µ0), m(µ1), …, m(µn-1) for the second row. In this paper, we will discuss Laplacian spectrum of the directed windmill graph () with k ≥ 1. The determination of the Laplacian spectrum in this study is to determine the characteristic polynomial of the Laplacian matrix from the directed windmill graph () with k ≥ 1. \nKeywords: Characteristic polynomial, directed windmill graph, Laplacian matrix, Laplacian spectrum.MSC2020 :05C50","PeriodicalId":264607,"journal":{"name":"Majalah Ilmiah Matematika dan Statistika","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Majalah Ilmiah Matematika dan Statistika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19184/mims.v22i2.31128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Suppose that 0 = µ0 ≤ µ1 ≤ ... ≤ µn-1 are eigen values of a Laplacian matrix graph with n vertices and m(µ0), m(µ1), …, m(µn-1) are the multiplicity of each µ, so the Laplacian spectrum of a graph can be expressed as a matrix 2 × n whose line elements are µ0, µ1, …, µn-1 for the first row, and m(µ0), m(µ1), …, m(µn-1) for the second row. In this paper, we will discuss Laplacian spectrum of the directed windmill graph () with k ≥ 1. The determination of the Laplacian spectrum in this study is to determine the characteristic polynomial of the Laplacian matrix from the directed windmill graph () with k ≥ 1. Keywords: Characteristic polynomial, directed windmill graph, Laplacian matrix, Laplacian spectrum.MSC2020 :05C50
设0 =µ0≤µ1≤…≤µn-1是有n个顶点的拉普拉斯矩阵图的特征值,m(µ0),m(µ1),…,m(µn-1)是每个µ的多重数,因此图的拉普拉斯谱可以表示为一个矩阵2 × n,第一行的线素为µ0,µ1,…,µn-1,第二行为m(µ0),m(µ1),…,m(µn-1)。本文讨论k≥1的有向风车图()的拉普拉斯谱。本研究中拉普拉斯谱的确定是从k≥1的有向风车图()中确定拉普拉斯矩阵的特征多项式。关键词:特征多项式,有向风车图,拉普拉斯矩阵,拉普拉斯谱。MSC2020: 05年网
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信