Regularized subspace Gaussian mixture models for cross-lingual speech recognition

Liang Lu, Arnab Ghoshal, S. Renals
{"title":"Regularized subspace Gaussian mixture models for cross-lingual speech recognition","authors":"Liang Lu, Arnab Ghoshal, S. Renals","doi":"10.1109/ASRU.2011.6163959","DOIUrl":null,"url":null,"abstract":"We investigate cross-lingual acoustic modelling for low resource languages using the subspace Gaussian mixture model (SGMM). We assume the presence of acoustic models trained on multiple source languages, and use the global subspace parameters from those models for improved modelling in a target language with limited amounts of transcribed speech. Experiments on the GlobalPhone corpus using Spanish, Portuguese, and Swedish as source languages and German as target language (with 1 hour and 5 hours of transcribed audio) show that multilingually trained SGMM shared parameters result in lower word error rates (WERs) than using those from a single source language. We also show that regularizing the estimation of the SGMM state vectors by penalizing their ℓ1-norm help to overcome numerical instabilities and lead to lower WER.","PeriodicalId":338241,"journal":{"name":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2011.6163959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

We investigate cross-lingual acoustic modelling for low resource languages using the subspace Gaussian mixture model (SGMM). We assume the presence of acoustic models trained on multiple source languages, and use the global subspace parameters from those models for improved modelling in a target language with limited amounts of transcribed speech. Experiments on the GlobalPhone corpus using Spanish, Portuguese, and Swedish as source languages and German as target language (with 1 hour and 5 hours of transcribed audio) show that multilingually trained SGMM shared parameters result in lower word error rates (WERs) than using those from a single source language. We also show that regularizing the estimation of the SGMM state vectors by penalizing their ℓ1-norm help to overcome numerical instabilities and lead to lower WER.
跨语言语音识别的正则子空间高斯混合模型
我们使用子空间高斯混合模型(SGMM)研究了低资源语言的跨语言声学建模。我们假设存在在多个源语言上训练的声学模型,并使用来自这些模型的全局子空间参数在具有有限转录语音量的目标语言中改进建模。在GlobalPhone语料库上使用西班牙语、葡萄牙语和瑞典语作为源语言,德语作为目标语言(分别有1小时和5小时的转录音频)进行的实验表明,多语言训练的SGMM共享参数比使用单一源语言的SGMM共享参数产生更低的单词错误率(wer)。我们还表明,通过惩罚它们的1-范数来正则化SGMM状态向量的估计有助于克服数值不稳定性并导致更低的WER。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信