Domain adaptation methods for robust pattern recognition

D. A. Shaw, R. Chellappa
{"title":"Domain adaptation methods for robust pattern recognition","authors":"D. A. Shaw, R. Chellappa","doi":"10.1109/ITA.2014.6804227","DOIUrl":null,"url":null,"abstract":"The large majority of classical and modern estimation techniques assume the data seen at the testing phase of statistical inference come from the same process that generated the training data. In many real-world applications this can be a restrictive assumption. We outline two solutions to overcome this heterogeneity: instance-weighting and dimension reduction. The instance-weighting methods estimate weights to use in a loss function in an attempt to make the weighted training distribution “look like” the testing distribution, whereas dimension reduction methods seek transformations of the training and testing data to place them both into a latent space where their distributions will be similar. We use synthetic datasets and a real data example to test the methods against one another.","PeriodicalId":338302,"journal":{"name":"2014 Information Theory and Applications Workshop (ITA)","volume":"263 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Information Theory and Applications Workshop (ITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA.2014.6804227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The large majority of classical and modern estimation techniques assume the data seen at the testing phase of statistical inference come from the same process that generated the training data. In many real-world applications this can be a restrictive assumption. We outline two solutions to overcome this heterogeneity: instance-weighting and dimension reduction. The instance-weighting methods estimate weights to use in a loss function in an attempt to make the weighted training distribution “look like” the testing distribution, whereas dimension reduction methods seek transformations of the training and testing data to place them both into a latent space where their distributions will be similar. We use synthetic datasets and a real data example to test the methods against one another.
鲁棒模式识别的领域自适应方法
大多数经典和现代的估计技术都假定在统计推断的测试阶段看到的数据来自生成训练数据的相同过程。在许多实际应用程序中,这可能是一个限制性假设。我们概述了克服这种异质性的两种解决方案:实例加权和降维。实例加权方法估计在损失函数中使用的权重,试图使加权训练分布“看起来像”测试分布,而降维方法寻求训练和测试数据的转换,将它们都放置在一个潜在空间中,在那里它们的分布将是相似的。我们使用合成的数据集和一个真实的数据例子来测试这些方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信