Performance Mimicking Benchmarks for Multi-tier Applications

S. Duttagupta, Mukund Kumar, V. Apte
{"title":"Performance Mimicking Benchmarks for Multi-tier Applications","authors":"S. Duttagupta, Mukund Kumar, V. Apte","doi":"10.1145/2859889.2859898","DOIUrl":null,"url":null,"abstract":"Predicting performance of multi-tier enterprise applications for a target platform is of significant importance to IT industries especially when target environment is unavailable for deployment. Performance modeling techniques depend on accurate estimation of resource demands for a specific application. This paper proposes a methodology for deriving Performance Mimicking Benchmarks (PMBs) that can predict resource demand of application server of multi-tier on-line transaction processing applications on a target environment. PMBs do not require the actual application to be deployed on the target itself. These benchmarks invoke similar method calls as the application at different layers in the technology stack that contribute significantly to CPU utilization. Further, they mimic all send and receive interactions with external servers (e.g., database server) and web clients. Ability of PMBs for service demand prediction is validated with a number of sample multi-tier applications including SPECjEnterprise2010 on disparate hardware configurations. These service demands when used in a modified version of Mean Value Analysis algorithm, can predict throughput and response time with accuracy close to 90%.","PeriodicalId":265808,"journal":{"name":"Companion Publication for ACM/SPEC on International Conference on Performance Engineering","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Publication for ACM/SPEC on International Conference on Performance Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2859889.2859898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Predicting performance of multi-tier enterprise applications for a target platform is of significant importance to IT industries especially when target environment is unavailable for deployment. Performance modeling techniques depend on accurate estimation of resource demands for a specific application. This paper proposes a methodology for deriving Performance Mimicking Benchmarks (PMBs) that can predict resource demand of application server of multi-tier on-line transaction processing applications on a target environment. PMBs do not require the actual application to be deployed on the target itself. These benchmarks invoke similar method calls as the application at different layers in the technology stack that contribute significantly to CPU utilization. Further, they mimic all send and receive interactions with external servers (e.g., database server) and web clients. Ability of PMBs for service demand prediction is validated with a number of sample multi-tier applications including SPECjEnterprise2010 on disparate hardware configurations. These service demands when used in a modified version of Mean Value Analysis algorithm, can predict throughput and response time with accuracy close to 90%.
多层应用程序的性能模拟基准
预测目标平台的多层企业应用程序的性能对于IT行业非常重要,特别是在目标环境无法部署时。性能建模技术依赖于对特定应用程序的资源需求的准确估计。本文提出了一种计算性能模拟基准的方法,该方法可以预测目标环境下多层联机事务处理应用程序的应用服务器的资源需求。pmb不需要在目标本身上部署实际的应用程序。这些基准测试在技术堆栈的不同层调用与应用程序类似的方法调用,这对CPU利用率有很大影响。此外,它们模拟所有与外部服务器(例如,数据库服务器)和web客户端的发送和接收交互。pmb用于服务需求预测的能力通过许多示例多层应用程序(包括在不同硬件配置上的SPECjEnterprise2010)进行了验证。这些服务需求在修改版本的均值分析算法中使用时,可以预测吞吐量和响应时间,准确率接近90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信