Poster: Optimizing Mobile Video Telephony Using Deep Imitation Learning

Anfu Zhou, Huanhuan Zhang, Guangyuan Su, Leilei Wu, Ruoxuan Ma, Zhen Meng, Xinyu Zhang, Xiufeng Xie, Huadong Ma, Xiaojiang Chen
{"title":"Poster: Optimizing Mobile Video Telephony Using Deep Imitation Learning","authors":"Anfu Zhou, Huanhuan Zhang, Guangyuan Su, Leilei Wu, Ruoxuan Ma, Zhen Meng, Xinyu Zhang, Xiufeng Xie, Huadong Ma, Xiaojiang Chen","doi":"10.1145/3300061.3343408","DOIUrl":null,"url":null,"abstract":"Despite the pervasive use of real-time video telephony services, their quality of experience (QoE) remains unsatisfactory, especially over the mobile Internet. We conduct a large-scale measurement campaign on \\appname, an operational mobile video telephony service. Our analysis shows that the application-layer video codec and transport-layer protocols remain highly uncoordinated, which represents one major reason for the low QoE. We thus propose \\name, a machine learning based framework to resolve the issue. We train \\name with the massive data traces from the measurement campaign using a custom-designed imitation learning algorithm, which enables \\name to learn from past experience following an expert's iterative demonstration/supervision. We have implemented and incorporated \\name into the \\appname. Our experiments show that \\name outperforms state-of-the-art solutions, improving video quality while reducing stalling time by multi-folds under various practical scenarios.","PeriodicalId":223523,"journal":{"name":"The 25th Annual International Conference on Mobile Computing and Networking","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 25th Annual International Conference on Mobile Computing and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3300061.3343408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the pervasive use of real-time video telephony services, their quality of experience (QoE) remains unsatisfactory, especially over the mobile Internet. We conduct a large-scale measurement campaign on \appname, an operational mobile video telephony service. Our analysis shows that the application-layer video codec and transport-layer protocols remain highly uncoordinated, which represents one major reason for the low QoE. We thus propose \name, a machine learning based framework to resolve the issue. We train \name with the massive data traces from the measurement campaign using a custom-designed imitation learning algorithm, which enables \name to learn from past experience following an expert's iterative demonstration/supervision. We have implemented and incorporated \name into the \appname. Our experiments show that \name outperforms state-of-the-art solutions, improving video quality while reducing stalling time by multi-folds under various practical scenarios.
海报:利用深度模仿学习优化移动视频电话
尽管实时视频电话服务的使用非常普遍,但它们的体验质量(QoE)仍然令人不满意,特别是在移动互联网上。我们在移动视频电话服务appname上进行了大规模的测量活动。我们的分析表明,应用层视频编解码器和传输层协议仍然高度不协调,这是低QoE的一个主要原因。因此,我们提出\name,一个基于机器学习的框架来解决这个问题。我们使用定制设计的模仿学习算法,用测量活动的大量数据痕迹训练\name,这使得\name能够在专家的迭代演示/监督下从过去的经验中学习。我们已经实现并将\name合并到\appname中。我们的实验表明,\name优于最先进的解决方案,在各种实际场景下提高了视频质量,同时将失速时间缩短了数倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信