MRapid: An Efficient Short Job Optimizer on Hadoop

Hong Zhang, Hai Huang, Liqiang Wang
{"title":"MRapid: An Efficient Short Job Optimizer on Hadoop","authors":"Hong Zhang, Hai Huang, Liqiang Wang","doi":"10.1109/IPDPS.2017.100","DOIUrl":null,"url":null,"abstract":"Data have been generated and collected at an accelerating pace. Hadoop has made analyzing large scale data much simpler to developers/analysts using commodity hardware. Interestingly, it has been shown that most Hadoop jobs have small input size and do not run for long time. For example, higher level query languages, such as Hive and Pig, would handle a complex query by breaking it into smaller adhoc ones. Although Hadoop is designed for handling complex queries with large data sets, we found that it is highly inefficient to operate at small scale data, despite a new Uber mode was introduced specifically to handle jobs with small input size. In this paper, we propose an optimized Hadoop extension called MRapid, which significantly speeds up the execution of short jobs. It is completely backward compatible to Hadoop, and imposes negligible overhead. Our experiments on Microsoft Azure public cloud show that MRapid can improve performance by up to 88% compared to the original Hadoop.","PeriodicalId":209524,"journal":{"name":"2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2017.100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

Data have been generated and collected at an accelerating pace. Hadoop has made analyzing large scale data much simpler to developers/analysts using commodity hardware. Interestingly, it has been shown that most Hadoop jobs have small input size and do not run for long time. For example, higher level query languages, such as Hive and Pig, would handle a complex query by breaking it into smaller adhoc ones. Although Hadoop is designed for handling complex queries with large data sets, we found that it is highly inefficient to operate at small scale data, despite a new Uber mode was introduced specifically to handle jobs with small input size. In this paper, we propose an optimized Hadoop extension called MRapid, which significantly speeds up the execution of short jobs. It is completely backward compatible to Hadoop, and imposes negligible overhead. Our experiments on Microsoft Azure public cloud show that MRapid can improve performance by up to 88% compared to the original Hadoop.
MRapid:一个高效的Hadoop短作业优化器
数据的生成和收集速度正在加快。Hadoop让使用商用硬件的开发人员/分析师更容易分析大规模数据。有趣的是,大多数Hadoop作业的输入大小都很小,并且不会运行很长时间。例如,高级查询语言,如Hive和Pig,可以通过将复杂查询分解为更小的特殊查询来处理复杂查询。虽然Hadoop是为处理大型数据集的复杂查询而设计的,但我们发现,在小规模数据上操作效率非常低,尽管引入了一种新的Uber模式,专门用于处理小输入量的任务。在本文中,我们提出了一个优化的Hadoop扩展mrrapid,它显著加快了短作业的执行速度。它与Hadoop完全向后兼容,并且可以忽略开销。我们在微软Azure公共云上的实验表明,与最初的Hadoop相比,MRapid可以提高高达88%的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信