LabelAR

Michael J. Laielli, James Smith, Giscard Biamby, Trevor Darrell, B. Hartmann
{"title":"LabelAR","authors":"Michael J. Laielli, James Smith, Giscard Biamby, Trevor Darrell, B. Hartmann","doi":"10.1145/3332165.3347927","DOIUrl":null,"url":null,"abstract":"Computer vision is applied in an ever expanding range of applications, many of which require custom training data to perform well. We present a novel interface for rapid collection of labeled training images to improve CV-based object detectors. LabelAR leverages the spatial tracking capabilities of an AR-enabled camera, allowing users to place persistent bounding volumes that stay centered on real-world objects. The interface then guides the user to move the camera to cover a wide variety of viewpoints. We eliminate the need for post hoc labeling of images by automatically projecting 2D bounding boxes around objects in the images as they are captured from AR-marked viewpoints. In a user study with 12 participants, LabelAR significantly outperforms existing approaches in terms of the trade-off between detection performance and collection time.","PeriodicalId":431403,"journal":{"name":"Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3332165.3347927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Computer vision is applied in an ever expanding range of applications, many of which require custom training data to perform well. We present a novel interface for rapid collection of labeled training images to improve CV-based object detectors. LabelAR leverages the spatial tracking capabilities of an AR-enabled camera, allowing users to place persistent bounding volumes that stay centered on real-world objects. The interface then guides the user to move the camera to cover a wide variety of viewpoints. We eliminate the need for post hoc labeling of images by automatically projecting 2D bounding boxes around objects in the images as they are captured from AR-marked viewpoints. In a user study with 12 participants, LabelAR significantly outperforms existing approaches in terms of the trade-off between detection performance and collection time.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信