Expressing preferences in logic programming using an infinite-valued logic

P. Rondogiannis, Antonis Troumpoukis
{"title":"Expressing preferences in logic programming using an infinite-valued logic","authors":"P. Rondogiannis, Antonis Troumpoukis","doi":"10.1145/2790449.2790511","DOIUrl":null,"url":null,"abstract":"We propose the new logic programming language PrefLog, which is based on an infinite-valued logic in order to support operators for expressing preferences. We demonstrate that if the operators used are continuous over the infinite-valued underlying domain, then the resulting logic programming language retains the well-known properties of classical logic programming (and most notably the existence of a least Herbrand model). We argue that one can define simple and natural new continuous operators by using a small set of operators that are easily shown to be continuous. Finally, we demonstrate that despite the fact that the underlying truth domain and the set of possible interpretations of a PrefLog program are infinite, we can define a terminating bottom-up proof procedure for implementing a significant and useful fragment of the language.","PeriodicalId":445788,"journal":{"name":"Proceedings of the 17th International Symposium on Principles and Practice of Declarative Programming","volume":"344 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 17th International Symposium on Principles and Practice of Declarative Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2790449.2790511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We propose the new logic programming language PrefLog, which is based on an infinite-valued logic in order to support operators for expressing preferences. We demonstrate that if the operators used are continuous over the infinite-valued underlying domain, then the resulting logic programming language retains the well-known properties of classical logic programming (and most notably the existence of a least Herbrand model). We argue that one can define simple and natural new continuous operators by using a small set of operators that are easily shown to be continuous. Finally, we demonstrate that despite the fact that the underlying truth domain and the set of possible interpretations of a PrefLog program are infinite, we can define a terminating bottom-up proof procedure for implementing a significant and useful fragment of the language.
用无限值逻辑表达逻辑编程中的偏好
我们提出了一种新的逻辑编程语言PrefLog,它基于无限值逻辑,以支持表示偏好的运算符。我们证明,如果所使用的算子在无限值的基础域上是连续的,那么所得到的逻辑编程语言保留了经典逻辑编程的众所周知的性质(最值得注意的是存在最小的Herbrand模型)。我们认为,我们可以通过使用一组易于证明为连续的算子来定义简单而自然的新连续算子。最后,我们证明了尽管PrefLog程序的潜在真域和可能的解释集是无限的,但我们可以定义一个自底向上的终止证明过程来实现该语言的重要和有用的片段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信