A Deep Learning-Based Approach for Accurate Segmentation of Bladder Wall using MR Images

K. Hammouda, A. El-Baz, F. Khalifa, A. Soliman, M. Ghazal, M. A. El-Ghar, A. Haddad, Mohammed M Elmogy, H. Darwish, R. Keynton
{"title":"A Deep Learning-Based Approach for Accurate Segmentation of Bladder Wall using MR Images","authors":"K. Hammouda, A. El-Baz, F. Khalifa, A. Soliman, M. Ghazal, M. A. El-Ghar, A. Haddad, Mohammed M Elmogy, H. Darwish, R. Keynton","doi":"10.1109/IST48021.2019.9010233","DOIUrl":null,"url":null,"abstract":"In this paper, a deep learning-based convolution neural network (CNN) is developed for accurate segmentation of the bladder wall using T2-weighted magnetic resonance imaging (T2W-MRI). Our framework utilizes a dual pathway, two-dimensional CNN for pathological bladder segmentation. Due to large bladder shape variability across subjects and the existence of pathology, a learnable adaptive shape prior (ASP) model is incorporated into our framework. To obtain the goal regions, the neural network fuses the MR image data for the first pathway, and the estimated ASP model for the second pathway. To remove noisy and scattered predictions, the CNN soft output is refined using a fully connected conditional random field (CRF). Our pipeline has been tested and evaluated using a leave-one-subject-out approach (LOSO) on twenty MRI data sets. Our framework achieved accurate segmentation results for the bladder wall and tumor as documented by the Dice similarity coefficient (DSC) and Hausdorff distance (HD). Moreover, comparative results against other segmentation approaches documented the superiority of our framework to provide accurate results for pathological bladder wall segmentation.","PeriodicalId":117219,"journal":{"name":"2019 IEEE International Conference on Imaging Systems and Techniques (IST)","volume":"160 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Imaging Systems and Techniques (IST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IST48021.2019.9010233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

In this paper, a deep learning-based convolution neural network (CNN) is developed for accurate segmentation of the bladder wall using T2-weighted magnetic resonance imaging (T2W-MRI). Our framework utilizes a dual pathway, two-dimensional CNN for pathological bladder segmentation. Due to large bladder shape variability across subjects and the existence of pathology, a learnable adaptive shape prior (ASP) model is incorporated into our framework. To obtain the goal regions, the neural network fuses the MR image data for the first pathway, and the estimated ASP model for the second pathway. To remove noisy and scattered predictions, the CNN soft output is refined using a fully connected conditional random field (CRF). Our pipeline has been tested and evaluated using a leave-one-subject-out approach (LOSO) on twenty MRI data sets. Our framework achieved accurate segmentation results for the bladder wall and tumor as documented by the Dice similarity coefficient (DSC) and Hausdorff distance (HD). Moreover, comparative results against other segmentation approaches documented the superiority of our framework to provide accurate results for pathological bladder wall segmentation.
基于深度学习的MR图像膀胱壁精确分割方法
本文开发了一种基于深度学习的卷积神经网络(CNN),用于利用t2加权磁共振成像(T2W-MRI)对膀胱壁进行准确分割。我们的框架采用双通道,二维CNN病理膀胱分割。由于膀胱形状在受试者之间存在较大的可变性和病理学,一个可学习的自适应形状先验(ASP)模型被纳入我们的框架。为了获得目标区域,神经网络将MR图像数据融合为第一条路径,将估计的ASP模型融合为第二条路径。为了去除噪声和分散的预测,CNN软输出使用全连接条件随机场(CRF)进行细化。我们的管道已经在20个MRI数据集上使用留一个受试者方法(LOSO)进行了测试和评估。根据Dice相似系数(DSC)和Hausdorff距离(HD),我们的框架实现了膀胱壁和肿瘤的准确分割结果。此外,与其他分割方法的比较结果证明了我们的框架在提供病理膀胱壁分割的准确结果方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信