{"title":"Deep learning to explain and design complex nanophotonic structures","authors":"A. Raman","doi":"10.1117/12.2595477","DOIUrl":null,"url":null,"abstract":"A central challenge in the development of nanophotonic structures and metamaterials is identifying the optimal design for a target functionality and understanding the physical mechanisms that enable the optimized device’s capabilities. In this talk, we will describe deep learning-driven strategies to both design complex nanophotonic structures, including across multiple device categories, as well as understand their behavior. We will highlight potential pathways to making deep learning a tool for global inverse design across multiple device categories, while also opening up the 'black box' of the machine learning algorithm to understand why a particular optimized design works well.","PeriodicalId":389503,"journal":{"name":"Metamaterials, Metadevices, and Metasystems 2021","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metamaterials, Metadevices, and Metasystems 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2595477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A central challenge in the development of nanophotonic structures and metamaterials is identifying the optimal design for a target functionality and understanding the physical mechanisms that enable the optimized device’s capabilities. In this talk, we will describe deep learning-driven strategies to both design complex nanophotonic structures, including across multiple device categories, as well as understand their behavior. We will highlight potential pathways to making deep learning a tool for global inverse design across multiple device categories, while also opening up the 'black box' of the machine learning algorithm to understand why a particular optimized design works well.