Ramsey Faragher, Oliver R. A. Chick, Daniel T. Wagner, Timothy Goh, James Snee, Brian Jones
{"title":"Captain Buzz: An All-Smartphone Autonomous Delta-Wing Drone","authors":"Ramsey Faragher, Oliver R. A. Chick, Daniel T. Wagner, Timothy Goh, James Snee, Brian Jones","doi":"10.1145/2750675.2750682","DOIUrl":null,"url":null,"abstract":"Fully autonomous hobbyist drones are typically controlled using bespoke microcontrollers, or general purpose low-level controllers such as the Arduino[1]. However, these devices only have limited compute power and sensing capabilities, and do not easily provide cellular connectivity options. We present Captain Buzz, an Android smartphone app capable of piloting a delta-wing glider autonomously. Captain Buzz can control servos directly via pulse width modulation signals transmitted over the smartphone audio port. Compared with traditional approaches to building an autopilot, Captain Buzz allows users to leverage existing Android libraries for flight attitude determination, provides innovative use-cases, allows users to reprogram their autopilot mid-flight for rapid prototyping, and reduces the cost of building drones.","PeriodicalId":233042,"journal":{"name":"Proceedings of the First Workshop on Micro Aerial Vehicle Networks, Systems, and Applications for Civilian Use","volume":"285 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First Workshop on Micro Aerial Vehicle Networks, Systems, and Applications for Civilian Use","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2750675.2750682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Fully autonomous hobbyist drones are typically controlled using bespoke microcontrollers, or general purpose low-level controllers such as the Arduino[1]. However, these devices only have limited compute power and sensing capabilities, and do not easily provide cellular connectivity options. We present Captain Buzz, an Android smartphone app capable of piloting a delta-wing glider autonomously. Captain Buzz can control servos directly via pulse width modulation signals transmitted over the smartphone audio port. Compared with traditional approaches to building an autopilot, Captain Buzz allows users to leverage existing Android libraries for flight attitude determination, provides innovative use-cases, allows users to reprogram their autopilot mid-flight for rapid prototyping, and reduces the cost of building drones.