Dynamic state estimation in the presence of compromised sensory data

Yorie Nakahira, Yilin Mo
{"title":"Dynamic state estimation in the presence of compromised sensory data","authors":"Yorie Nakahira, Yilin Mo","doi":"10.1109/CDC.2015.7403132","DOIUrl":null,"url":null,"abstract":"In this article, we consider the state estimation problem of a linear time invariant system in adversarial environment. We assume that the process noise and measurement noise of the system are l∞ functions. The adversary compromises at most γ sensors, the set of which is unknown to the estimation algorithm, and can change their measurements arbitrarily. We first prove that if after removing a set of 2γ sensors, the system is undetectable, then there exists a destabilizing noise process and attacker's input to render the estimation error unbounded. For the case that the system remains detectable after removing an arbitrary set of 2γ sensors, we construct a resilient estimator and provide an upper bound on the l∞ norm of the estimation error. Finally, a numerical example is provided to illustrate the effectiveness of the proposed estimator design.","PeriodicalId":308101,"journal":{"name":"2015 54th IEEE Conference on Decision and Control (CDC)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 54th IEEE Conference on Decision and Control (CDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2015.7403132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

In this article, we consider the state estimation problem of a linear time invariant system in adversarial environment. We assume that the process noise and measurement noise of the system are l∞ functions. The adversary compromises at most γ sensors, the set of which is unknown to the estimation algorithm, and can change their measurements arbitrarily. We first prove that if after removing a set of 2γ sensors, the system is undetectable, then there exists a destabilizing noise process and attacker's input to render the estimation error unbounded. For the case that the system remains detectable after removing an arbitrary set of 2γ sensors, we construct a resilient estimator and provide an upper bound on the l∞ norm of the estimation error. Finally, a numerical example is provided to illustrate the effectiveness of the proposed estimator design.
感知数据受损时的动态状态估计
本文研究了对抗环境下线性时不变系统的状态估计问题。我们假设系统的过程噪声和测量噪声是l∞函数。攻击者最多破坏γ个传感器,这些传感器的集合对估计算法来说是未知的,并且可以任意改变它们的测量值。我们首先证明,如果移除一组2γ传感器后,系统是不可检测的,则存在不稳定噪声过程和攻击者的输入使估计误差无界。对于移除任意2γ传感器后系统仍然可检测的情况,我们构造了一个弹性估计量,并提供了估计误差的l∞范数的上界。最后,给出了一个数值算例来说明所提估计器设计的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信