{"title":"Magnetic micropillar sensors for force sensing","authors":"A. Alfadhel, J. Kosel","doi":"10.1109/SAS.2015.7133654","DOIUrl":null,"url":null,"abstract":"A force sensor system consisting of bioinspired, magnetic and highly elastic micropillars integrated on a magnetic field sensing element is reported. The micro-pillars are made of a nanocomposite consisting of magnetic nanowires incorporated into polydimethylsiloxane. The permanent magnetic behavior of the nanowires allows remote operation without an additional magnetic field to magnetize the nanowires, which simplifies miniaturization and system integration. We demonstrate the potential of this concept by realizing a tactile sensing element. The developed sensor element operates at power consumption of 75 μW and has a detection range between 0-120 kPa and a resolution of 2.7 kPa, which can easily be tuned in a wide range.","PeriodicalId":384041,"journal":{"name":"2015 IEEE Sensors Applications Symposium (SAS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Sensors Applications Symposium (SAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAS.2015.7133654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
A force sensor system consisting of bioinspired, magnetic and highly elastic micropillars integrated on a magnetic field sensing element is reported. The micro-pillars are made of a nanocomposite consisting of magnetic nanowires incorporated into polydimethylsiloxane. The permanent magnetic behavior of the nanowires allows remote operation without an additional magnetic field to magnetize the nanowires, which simplifies miniaturization and system integration. We demonstrate the potential of this concept by realizing a tactile sensing element. The developed sensor element operates at power consumption of 75 μW and has a detection range between 0-120 kPa and a resolution of 2.7 kPa, which can easily be tuned in a wide range.