Towards fully un-supervised methods for generating object detection classifiers using social data

S. Nikolopoulos, E. Chatzilari, Eirini Giannakidou, Y. Kompatsiaris
{"title":"Towards fully un-supervised methods for generating object detection classifiers using social data","authors":"S. Nikolopoulos, E. Chatzilari, Eirini Giannakidou, Y. Kompatsiaris","doi":"10.1109/WIAMIS.2009.5031475","DOIUrl":null,"url":null,"abstract":"In this work a framework for constructing object detection classifiers using weakly annotated social data is proposed. Social information is combined with computer vision techniques to automatically obtain a set of images annotated at region-detail. All assumptions made to automate the proposed framework are driven by the reasonable expectation that due to the collaborative aspect of social data, linguistic descriptions and visual representations will start to converge on common concepts, as the scale of the analyzed dataset increases. Comparison tests performed againstmanually trained object detectors showed that comparable performance can be achieved.","PeriodicalId":233839,"journal":{"name":"2009 10th Workshop on Image Analysis for Multimedia Interactive Services","volume":"37 7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 10th Workshop on Image Analysis for Multimedia Interactive Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIAMIS.2009.5031475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this work a framework for constructing object detection classifiers using weakly annotated social data is proposed. Social information is combined with computer vision techniques to automatically obtain a set of images annotated at region-detail. All assumptions made to automate the proposed framework are driven by the reasonable expectation that due to the collaborative aspect of social data, linguistic descriptions and visual representations will start to converge on common concepts, as the scale of the analyzed dataset increases. Comparison tests performed againstmanually trained object detectors showed that comparable performance can be achieved.
面向利用社会数据生成目标检测分类器的完全无监督方法
在这项工作中,提出了一个使用弱注释社会数据构建目标检测分类器的框架。将社会信息与计算机视觉技术相结合,自动获得一组区域细节标注的图像。所有自动化框架的假设都是由合理的预期驱动的,由于社交数据的协作方面,随着分析数据集的规模增加,语言描述和视觉表示将开始收敛于共同的概念。与手动训练的目标检测器进行的比较测试表明,可以实现相当的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信