Parallelotope Bundles for Polynomial Reachability

T. Dreossi, T. Dang, C. Piazza
{"title":"Parallelotope Bundles for Polynomial Reachability","authors":"T. Dreossi, T. Dang, C. Piazza","doi":"10.1145/2883817.2883838","DOIUrl":null,"url":null,"abstract":"In this work we present parallelotope bundles, i.e., sets of parallelotopes for a symbolic representation of polytopes. We define a compact representation of these objects and show that any polytope can be canonically expressed by a bundle. We propose efficient algorithms for the manipulation of bundles. Among these, we define techniques for computing tight over-approximations of polynomial transformations. We apply our framework, in combination with the Bernstein technique, to the reachability problem for polynomial dynamical systems. The accuracy and scalability of our approach are validated on a number of case studies.","PeriodicalId":337926,"journal":{"name":"Proceedings of the 19th International Conference on Hybrid Systems: Computation and Control","volume":"516 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th International Conference on Hybrid Systems: Computation and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2883817.2883838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

Abstract

In this work we present parallelotope bundles, i.e., sets of parallelotopes for a symbolic representation of polytopes. We define a compact representation of these objects and show that any polytope can be canonically expressed by a bundle. We propose efficient algorithms for the manipulation of bundles. Among these, we define techniques for computing tight over-approximations of polynomial transformations. We apply our framework, in combination with the Bernstein technique, to the reachability problem for polynomial dynamical systems. The accuracy and scalability of our approach are validated on a number of case studies.
多项式可达性的平行四边形束
在这项工作中,我们提出了平行四边形束,即多面体的符号表示的平行四面体集。我们定义了这些对象的紧表示,并证明了任何多面体都可以用束规范化表示。我们提出了有效的算法来操纵束。其中,我们定义了计算多项式变换的严格过逼近的技术。我们结合Bernstein技术,将我们的框架应用于多项式动力系统的可达性问题。我们的方法的准确性和可扩展性在许多案例研究中得到了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信