{"title":"Multiple Hermite polynomials and simultaneous Gaussian quadrature","authors":"W. Assche, A. Vuerinckx","doi":"10.1553/etna_vol50s182","DOIUrl":null,"url":null,"abstract":"Multiple Hermite polynomials are an extension of the classical Hermite polynomials for which orthogonality conditions are imposed with respect to $r>1$ normal (Gaussian) weights $w_j(x)=e^{-x^2+c_jx}$ with different means $c_j/2$, $1 \\leq j \\leq r$. These polynomials have a number of properties, such as a Rodrigues formula, recurrence relations (connecting polynomials with nearest neighbor multi-indices), a differential equation, etc. The asymptotic distribution of the (scaled) zeros is investigated and an interesting new feature happens: depending on the distance between the $c_j$, $1 \\leq j \\leq r$, the zeros may accumulate on $s$ disjoint intervals, where $1 \\leq s \\leq r$. We will use the zeros of these multiple Hermite polynomials to approximate integrals of the form $\\displaystyle \\int_{-\\infty}^{\\infty} f(x) \\exp(-x^2 + c_jx)\\, dx$ simultaneously for $1 \\leq j \\leq r$ for the case $r=3$ and the situation when the zeros accumulate on three disjoint intervals. We also give some properties of the corresponding quadrature weights.","PeriodicalId":282695,"journal":{"name":"ETNA - Electronic Transactions on Numerical Analysis","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETNA - Electronic Transactions on Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1553/etna_vol50s182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Multiple Hermite polynomials are an extension of the classical Hermite polynomials for which orthogonality conditions are imposed with respect to $r>1$ normal (Gaussian) weights $w_j(x)=e^{-x^2+c_jx}$ with different means $c_j/2$, $1 \leq j \leq r$. These polynomials have a number of properties, such as a Rodrigues formula, recurrence relations (connecting polynomials with nearest neighbor multi-indices), a differential equation, etc. The asymptotic distribution of the (scaled) zeros is investigated and an interesting new feature happens: depending on the distance between the $c_j$, $1 \leq j \leq r$, the zeros may accumulate on $s$ disjoint intervals, where $1 \leq s \leq r$. We will use the zeros of these multiple Hermite polynomials to approximate integrals of the form $\displaystyle \int_{-\infty}^{\infty} f(x) \exp(-x^2 + c_jx)\, dx$ simultaneously for $1 \leq j \leq r$ for the case $r=3$ and the situation when the zeros accumulate on three disjoint intervals. We also give some properties of the corresponding quadrature weights.