Multiple Hermite polynomials and simultaneous Gaussian quadrature

W. Assche, A. Vuerinckx
{"title":"Multiple Hermite polynomials and simultaneous Gaussian quadrature","authors":"W. Assche, A. Vuerinckx","doi":"10.1553/etna_vol50s182","DOIUrl":null,"url":null,"abstract":"Multiple Hermite polynomials are an extension of the classical Hermite polynomials for which orthogonality conditions are imposed with respect to $r>1$ normal (Gaussian) weights $w_j(x)=e^{-x^2+c_jx}$ with different means $c_j/2$, $1 \\leq j \\leq r$. These polynomials have a number of properties, such as a Rodrigues formula, recurrence relations (connecting polynomials with nearest neighbor multi-indices), a differential equation, etc. The asymptotic distribution of the (scaled) zeros is investigated and an interesting new feature happens: depending on the distance between the $c_j$, $1 \\leq j \\leq r$, the zeros may accumulate on $s$ disjoint intervals, where $1 \\leq s \\leq r$. We will use the zeros of these multiple Hermite polynomials to approximate integrals of the form $\\displaystyle \\int_{-\\infty}^{\\infty} f(x) \\exp(-x^2 + c_jx)\\, dx$ simultaneously for $1 \\leq j \\leq r$ for the case $r=3$ and the situation when the zeros accumulate on three disjoint intervals. We also give some properties of the corresponding quadrature weights.","PeriodicalId":282695,"journal":{"name":"ETNA - Electronic Transactions on Numerical Analysis","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETNA - Electronic Transactions on Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1553/etna_vol50s182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Multiple Hermite polynomials are an extension of the classical Hermite polynomials for which orthogonality conditions are imposed with respect to $r>1$ normal (Gaussian) weights $w_j(x)=e^{-x^2+c_jx}$ with different means $c_j/2$, $1 \leq j \leq r$. These polynomials have a number of properties, such as a Rodrigues formula, recurrence relations (connecting polynomials with nearest neighbor multi-indices), a differential equation, etc. The asymptotic distribution of the (scaled) zeros is investigated and an interesting new feature happens: depending on the distance between the $c_j$, $1 \leq j \leq r$, the zeros may accumulate on $s$ disjoint intervals, where $1 \leq s \leq r$. We will use the zeros of these multiple Hermite polynomials to approximate integrals of the form $\displaystyle \int_{-\infty}^{\infty} f(x) \exp(-x^2 + c_jx)\, dx$ simultaneously for $1 \leq j \leq r$ for the case $r=3$ and the situation when the zeros accumulate on three disjoint intervals. We also give some properties of the corresponding quadrature weights.
多重厄米特多项式和同时高斯正交
多重埃尔米特多项式是经典埃尔米特多项式的扩展,它对$r>1$正态(高斯)权$w_j(x)=e^{-x^2+c_jx}$施加正交性条件,具有不同的均值$c_j/2$, $1 \leq j \leq r$。这些多项式具有许多性质,如Rodrigues公式,递归关系(将多项式与最近邻多指标连接起来),微分方程等。研究了(缩放的)零的渐近分布,并出现了一个有趣的新特征:根据$c_j$, $1 \leq j \leq r$之间的距离,零可能积聚在$s$不相交的区间上,其中$1 \leq s \leq r$。我们将使用这些多重埃尔米特多项式的零点来近似$\displaystyle \int_{-\infty}^{\infty} f(x) \exp(-x^2 + c_jx)\, dx$形式的积分同时对于$1 \leq j \leq r$的情况$r=3$和零在三个不相交的区间上累加的情况。我们还给出了相应的正交权值的一些性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信