Detection and Research on Unsafe Driving of Taxi Drivers

Xiaoyu Wu, Yu Wang, Naimeng Cang
{"title":"Detection and Research on Unsafe Driving of Taxi Drivers","authors":"Xiaoyu Wu, Yu Wang, Naimeng Cang","doi":"10.1109/TOCS50858.2020.9339721","DOIUrl":null,"url":null,"abstract":"In response to the unsafe driving of taxi drivers during the epidemic, the design and implementation of the driver's face registration and detection of whether the driver wears a mask, detection of the driver's fatigue physiological signals and multiple integration are designed. Target detection algorithm based on MobileNetV2 to realize mask detection. Combine MTCNN and Face-Net organically to realize driver's face login. The cerebellar neural network model is used to fuse the 12 fatigue monitoring signals EMG, EEG, etc. extracted by the simulated driving experiment platform to obtain a multi-integrated fatigue monitoring control model. After the fatigue driving multiple physiological indicators of the simulated driving platform, the technical model is studied and verified. It is concluded that the multiple fusion fatigue monitoring control model has higher accuracy than the traditional single signal monitoring.","PeriodicalId":373862,"journal":{"name":"2020 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TOCS50858.2020.9339721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In response to the unsafe driving of taxi drivers during the epidemic, the design and implementation of the driver's face registration and detection of whether the driver wears a mask, detection of the driver's fatigue physiological signals and multiple integration are designed. Target detection algorithm based on MobileNetV2 to realize mask detection. Combine MTCNN and Face-Net organically to realize driver's face login. The cerebellar neural network model is used to fuse the 12 fatigue monitoring signals EMG, EEG, etc. extracted by the simulated driving experiment platform to obtain a multi-integrated fatigue monitoring control model. After the fatigue driving multiple physiological indicators of the simulated driving platform, the technical model is studied and verified. It is concluded that the multiple fusion fatigue monitoring control model has higher accuracy than the traditional single signal monitoring.
出租车司机不安全驾驶的检测与研究
针对疫情期间出租车司机的不安全驾驶,设计并实现了司机面部登记及司机是否戴口罩检测、司机疲劳生理信号检测及多重积分。基于MobileNetV2的目标检测算法,实现掩码检测。将MTCNN与face - net有机结合,实现驾驶员人脸登录。利用小脑神经网络模型对模拟驾驶实验平台提取的肌电、脑电等12个疲劳监测信号进行融合,得到多积分的疲劳监测控制模型。在对仿真驾驶平台的多项生理指标进行疲劳驾驶后,对技术模型进行了研究和验证。结果表明,多信号融合疲劳监测控制模型比传统的单信号监测具有更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信