{"title":"PERBANDINGAN METODE KLASIFIKASI ARTIFICIAL NEURAL NETWORK BACKPROPAGATION DAN REGRESI LOGISTIK (Studi Kasus : Bank Internasional Indonesia)","authors":"Siti Hadijah Hasanah","doi":"10.32493/SM.V1I1.2372","DOIUrl":null,"url":null,"abstract":"Kredit tanpa agunan (KTA) adalah salah satu produk kredit yang diberikan bank kepada nasabah kredit dalam bentuk fasilitas pinjaman tanpa ada suatu jaminan. Karena tidak ada jaminan atas pinjaman tersebut maka bank harus berhati-hati memeriksa calon nasabah kredit agar tidak terjadi resiko kerugian di kemudian hari. Pengajuan aplikasi KTA oleh nasabah kepada pihak bank akan dilakukan penilaian berdasarkan teknik klasifikasi. Teknik klasifikasi pada KTA ini menggunakan metode pendekatan statistik yaitu regresi logistik dan ANN. Regresi logistik merupakan salah satu metode parametrik yang tidak disyaratkan asumsi-asumsi sebagaimana yang harus dipenuhi apabila melakukan analisis data dengan menggunakan regresi linear. Metode ANN adalah pemrosesan informasi yang terinspirasi oleh sistem syaraf biologi (Haykin,1999). Metode regresi logistik memiliki kemampuan untuk menentukan peubah penjelas yang berpengaruh terhadap peubah respon hasil keputusan. Regresi logistik dengan peubah penjelas berpengaruh yaitu jenis kelamin, jumlah cicilan 12 bulan, jumlah cicilan 24 bulan, dan standar gaji. Jadi pihak bank dapat menjadikan peubah penjelas tersebut sebagai pertimbangan untuk menentukan hasil keputusan nasabah KTA. Berdasarkan nilai ketepatan klasifikasi confusion matrix, nilai akurasi, dan AUC pada data training dan data testing metode yang terbaik pada data nasabah KTA yaitu ANN Backpropagation diikuti oleh regresi logistik.Kata Kunci : Kredit Tanpa Agunan, Artificial Neural Network (ANN) Backpropagation, Regresi Logistik.","PeriodicalId":198130,"journal":{"name":"STATMAT : JURNAL STATISTIKA DAN MATEMATIKA","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"STATMAT : JURNAL STATISTIKA DAN MATEMATIKA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32493/SM.V1I1.2372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Kredit tanpa agunan (KTA) adalah salah satu produk kredit yang diberikan bank kepada nasabah kredit dalam bentuk fasilitas pinjaman tanpa ada suatu jaminan. Karena tidak ada jaminan atas pinjaman tersebut maka bank harus berhati-hati memeriksa calon nasabah kredit agar tidak terjadi resiko kerugian di kemudian hari. Pengajuan aplikasi KTA oleh nasabah kepada pihak bank akan dilakukan penilaian berdasarkan teknik klasifikasi. Teknik klasifikasi pada KTA ini menggunakan metode pendekatan statistik yaitu regresi logistik dan ANN. Regresi logistik merupakan salah satu metode parametrik yang tidak disyaratkan asumsi-asumsi sebagaimana yang harus dipenuhi apabila melakukan analisis data dengan menggunakan regresi linear. Metode ANN adalah pemrosesan informasi yang terinspirasi oleh sistem syaraf biologi (Haykin,1999). Metode regresi logistik memiliki kemampuan untuk menentukan peubah penjelas yang berpengaruh terhadap peubah respon hasil keputusan. Regresi logistik dengan peubah penjelas berpengaruh yaitu jenis kelamin, jumlah cicilan 12 bulan, jumlah cicilan 24 bulan, dan standar gaji. Jadi pihak bank dapat menjadikan peubah penjelas tersebut sebagai pertimbangan untuk menentukan hasil keputusan nasabah KTA. Berdasarkan nilai ketepatan klasifikasi confusion matrix, nilai akurasi, dan AUC pada data training dan data testing metode yang terbaik pada data nasabah KTA yaitu ANN Backpropagation diikuti oleh regresi logistik.Kata Kunci : Kredit Tanpa Agunan, Artificial Neural Network (ANN) Backpropagation, Regresi Logistik.