Chow-Witt rings of split quadrics

J. Hornbostel, H. Xie, Marcus Zibrowius
{"title":"Chow-Witt rings of split quadrics","authors":"J. Hornbostel, H. Xie, Marcus Zibrowius","doi":"10.1090/conm/745/15024","DOIUrl":null,"url":null,"abstract":"We compute the Chow-Witt rings of split quadrics over a field of characteristic not two. We even determine the full bigraded I-cohomology and Milnor-Witt cohomology rings, including twists by line bundles. The results on I-cohomology corroborate the general philosophy that I-cohomology is an algebro-geometric version of singular cohomology of real varieties: our explicit calculations confirm that the I-cohomology ring of a split quadric over the reals is isomorphic to the singular cohomology ring of the space of its real points.","PeriodicalId":246899,"journal":{"name":"Motivic Homotopy Theory and Refined\n Enumerative Geometry","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Motivic Homotopy Theory and Refined\n Enumerative Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/conm/745/15024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We compute the Chow-Witt rings of split quadrics over a field of characteristic not two. We even determine the full bigraded I-cohomology and Milnor-Witt cohomology rings, including twists by line bundles. The results on I-cohomology corroborate the general philosophy that I-cohomology is an algebro-geometric version of singular cohomology of real varieties: our explicit calculations confirm that the I-cohomology ring of a split quadric over the reals is isomorphic to the singular cohomology ring of the space of its real points.
分裂二次曲面的Chow-Witt环
我们计算了非二特征域上分裂二次曲面的Chow-Witt环。我们甚至确定了包括线束扭转在内的全梯度i -上同环和Milnor-Witt上同环。关于i -上同调的结果证实了i -上同调是实数变异的奇异上同调的代数-几何版本的一般哲学:我们的显式计算证实了实数上分裂二次元的i -上同调环与其实数点空间的奇异上同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信