Support vector machines and Word2vec for text classification with semantic features

Joseph Lilleberg, Yun Zhu, Yanqing Zhang
{"title":"Support vector machines and Word2vec for text classification with semantic features","authors":"Joseph Lilleberg, Yun Zhu, Yanqing Zhang","doi":"10.1109/ICCI-CC.2015.7259377","DOIUrl":null,"url":null,"abstract":"With the rapid expansion of new available information presented to us online on a daily basis, text classification becomes imperative in order to classify and maintain it. Word2vec offers a unique perspective to the text mining community. By converting words and phrases into a vector representation, word2vec takes an entirely new approach on text classification. Based on the assumption that word2vec brings extra semantic features that helps in text classification, our work demonstrates the effectiveness of word2vec by showing that tf-idf and word2vec combined can outperform tf-idf because word2vec provides complementary features (e.g. semantics that tf-idf can't capture) to tf-idf. Our results show that the combination of word2vec weighted by tf-idf and tf-idf does not outperform tf-idf consistently. It is consistent enough to say the combination of the two can outperform either individually.","PeriodicalId":328695,"journal":{"name":"2015 IEEE 14th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","volume":"208 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"380","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 14th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCI-CC.2015.7259377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 380

Abstract

With the rapid expansion of new available information presented to us online on a daily basis, text classification becomes imperative in order to classify and maintain it. Word2vec offers a unique perspective to the text mining community. By converting words and phrases into a vector representation, word2vec takes an entirely new approach on text classification. Based on the assumption that word2vec brings extra semantic features that helps in text classification, our work demonstrates the effectiveness of word2vec by showing that tf-idf and word2vec combined can outperform tf-idf because word2vec provides complementary features (e.g. semantics that tf-idf can't capture) to tf-idf. Our results show that the combination of word2vec weighted by tf-idf and tf-idf does not outperform tf-idf consistently. It is consistent enough to say the combination of the two can outperform either individually.
支持向量机和Word2vec用于语义特征的文本分类
随着我们每天在网上获得的新信息的迅速增加,为了对其进行分类和维护,文本分类变得势在必行。Word2vec为文本挖掘社区提供了一个独特的视角。通过将单词和短语转换为向量表示,word2vec采用了一种全新的文本分类方法。基于word2vec带来有助于文本分类的额外语义特征的假设,我们的工作通过显示tf-idf和word2vec组合可以优于tf-idf来证明word2vec的有效性,因为word2vec提供了tf-idf无法捕获的补充特征(例如语义)。我们的结果表明,由tf-idf和tf-idf加权的word2vec组合并不总是优于tf-idf。可以说,两者结合起来的表现可以超过任何一个单独的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信