Interactive Principal Component Analysis

H. Siirtola, Tanja Säily, T. Nevalainen
{"title":"Interactive Principal Component Analysis","authors":"H. Siirtola, Tanja Säily, T. Nevalainen","doi":"10.1109/iV.2017.39","DOIUrl":null,"url":null,"abstract":"Principal Component Analysis (PCA) is an established and efficient method for finding structure in a multidimensional data set. PCA is based on orthogonal transformations that convert a set of multidimensional values into linearly uncorrelated variables called principal components.The main disadvantage to the PCA approach is that the procedure and outcome are often difficult to understand. The connection between input and output can be puzzling, a small change in input can yield a completely different output, and the user may often wonder if the PCA is doing the right thing.We introduce a user interface that makes the procedure and result easier to understand. We have implemented an interactive PCA view in our text visualization tool called Text Variation Explorer. It allows the user to interactively study the result of PCA, and provides a better understanding of the process.We believe that although we are addressing the problem of interactive principal component analysis in the context of text visualization, these ideas should be useful in other contexts as well.","PeriodicalId":410876,"journal":{"name":"2017 21st International Conference Information Visualisation (IV)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 21st International Conference Information Visualisation (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iV.2017.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Principal Component Analysis (PCA) is an established and efficient method for finding structure in a multidimensional data set. PCA is based on orthogonal transformations that convert a set of multidimensional values into linearly uncorrelated variables called principal components.The main disadvantage to the PCA approach is that the procedure and outcome are often difficult to understand. The connection between input and output can be puzzling, a small change in input can yield a completely different output, and the user may often wonder if the PCA is doing the right thing.We introduce a user interface that makes the procedure and result easier to understand. We have implemented an interactive PCA view in our text visualization tool called Text Variation Explorer. It allows the user to interactively study the result of PCA, and provides a better understanding of the process.We believe that although we are addressing the problem of interactive principal component analysis in the context of text visualization, these ideas should be useful in other contexts as well.
交互主成分分析
主成分分析(PCA)是一种在多维数据集中发现结构的有效方法。PCA基于正交变换,将一组多维值转换成称为主成分的线性不相关变量。PCA方法的主要缺点是其过程和结果往往难以理解。输入和输出之间的联系可能令人困惑,输入的一个小变化可能产生完全不同的输出,并且用户可能经常怀疑PCA是否在做正确的事情。我们引入了一个用户界面,使过程和结果更容易理解。我们已经在文本可视化工具text Variation Explorer中实现了一个交互式PCA视图。它允许用户交互式地研究PCA的结果,并提供对该过程的更好理解。我们相信,尽管我们正在解决文本可视化环境中的交互式主成分分析问题,但这些想法在其他环境中也应该是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信