Automatic endometrial segmentation in ultrasound images using deep learning

Yiyang Liu, Boyuan Peng, Xin Zhu, Wenwen Wang, Qin Zhou, Shixuan Wang, Jingjing Jiang, Li Fang
{"title":"Automatic endometrial segmentation in ultrasound images using deep learning","authors":"Yiyang Liu, Boyuan Peng, Xin Zhu, Wenwen Wang, Qin Zhou, Shixuan Wang, Jingjing Jiang, Li Fang","doi":"10.1109/MCSoC57363.2022.00020","DOIUrl":null,"url":null,"abstract":"Endometrial segmentation plays a vital role in the computerized evaluation of uterine ultrasonic images. Accurate segmentation of endometrial regions may improve the accuracy and efficiency of diagnosis. Recent studies have been focused on the employment of deep learning in medical image segmentation. In this study, we compared six models, including five convolutional neural networks with different network architectures (UNet, Segnet) and backbones (Resnet50, Vanilla CNN, VGG16) for the segmentation of endometrium, and one model called deep dual-resolution networks (DDRNets). The training and test datasets were composed of 840 and 210 images from 302 and 68 cases, respectively. Through validation, DRRNets demonstrated the best performance for endometrial segmentation with an average Dice coefficient (DSC) of 0.895.","PeriodicalId":150801,"journal":{"name":"2022 IEEE 15th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 15th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCSoC57363.2022.00020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Endometrial segmentation plays a vital role in the computerized evaluation of uterine ultrasonic images. Accurate segmentation of endometrial regions may improve the accuracy and efficiency of diagnosis. Recent studies have been focused on the employment of deep learning in medical image segmentation. In this study, we compared six models, including five convolutional neural networks with different network architectures (UNet, Segnet) and backbones (Resnet50, Vanilla CNN, VGG16) for the segmentation of endometrium, and one model called deep dual-resolution networks (DDRNets). The training and test datasets were composed of 840 and 210 images from 302 and 68 cases, respectively. Through validation, DRRNets demonstrated the best performance for endometrial segmentation with an average Dice coefficient (DSC) of 0.895.
基于深度学习的超声图像子宫内膜自动分割
子宫内膜分割在子宫超声图像的计算机评价中起着至关重要的作用。子宫内膜区域的准确分割可提高诊断的准确性和效率。近年来的研究重点是将深度学习应用于医学图像分割。在这项研究中,我们比较了六种模型,包括五种不同网络架构(UNet, Segnet)和骨干(Resnet50, Vanilla CNN, VGG16)的卷积神经网络用于子宫内膜分割,以及一种称为深度双分辨率网络(DDRNets)的模型。训练和测试数据集分别由来自302例和68例的840和210张图像组成。经验证,DRRNets在子宫内膜分割上表现最佳,平均Dice系数(DSC)为0.895。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信