Marcel Khalifa, Rotem Ben Hur, R. Ronen, Orian Leitersdorf, L. Yavits, Shahar Kvatinsky
{"title":"FiltPIM: In-Memory Filter for DNA Sequencing","authors":"Marcel Khalifa, Rotem Ben Hur, R. Ronen, Orian Leitersdorf, L. Yavits, Shahar Kvatinsky","doi":"10.1109/ICECS53924.2021.9665570","DOIUrl":null,"url":null,"abstract":"Aligning the entire genome of an organism is a compute-intensive task. Pre-alignment filters substantially reduce computation complexity by filtering potential alignment locations. The base-count filter successfully removes over 68% of the potential locations through a histogram-based heuristic. This paper presents FiltPIM, an efficient design of the base-count filter that is based on memristive processing-in-memory. The in-memory design reduces CPU-to-memory data transfer and utilizes both intra-crossbar and inter-crossbar memristive stateful-logic parallelism. The reduction in data transfer and the efficient stateful-logic computation together improve filtering time by 100x compared to a CPU implementation of the filter.","PeriodicalId":448558,"journal":{"name":"2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS)","volume":"48 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECS53924.2021.9665570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Aligning the entire genome of an organism is a compute-intensive task. Pre-alignment filters substantially reduce computation complexity by filtering potential alignment locations. The base-count filter successfully removes over 68% of the potential locations through a histogram-based heuristic. This paper presents FiltPIM, an efficient design of the base-count filter that is based on memristive processing-in-memory. The in-memory design reduces CPU-to-memory data transfer and utilizes both intra-crossbar and inter-crossbar memristive stateful-logic parallelism. The reduction in data transfer and the efficient stateful-logic computation together improve filtering time by 100x compared to a CPU implementation of the filter.