FiltPIM: In-Memory Filter for DNA Sequencing

Marcel Khalifa, Rotem Ben Hur, R. Ronen, Orian Leitersdorf, L. Yavits, Shahar Kvatinsky
{"title":"FiltPIM: In-Memory Filter for DNA Sequencing","authors":"Marcel Khalifa, Rotem Ben Hur, R. Ronen, Orian Leitersdorf, L. Yavits, Shahar Kvatinsky","doi":"10.1109/ICECS53924.2021.9665570","DOIUrl":null,"url":null,"abstract":"Aligning the entire genome of an organism is a compute-intensive task. Pre-alignment filters substantially reduce computation complexity by filtering potential alignment locations. The base-count filter successfully removes over 68% of the potential locations through a histogram-based heuristic. This paper presents FiltPIM, an efficient design of the base-count filter that is based on memristive processing-in-memory. The in-memory design reduces CPU-to-memory data transfer and utilizes both intra-crossbar and inter-crossbar memristive stateful-logic parallelism. The reduction in data transfer and the efficient stateful-logic computation together improve filtering time by 100x compared to a CPU implementation of the filter.","PeriodicalId":448558,"journal":{"name":"2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS)","volume":"48 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECS53924.2021.9665570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Aligning the entire genome of an organism is a compute-intensive task. Pre-alignment filters substantially reduce computation complexity by filtering potential alignment locations. The base-count filter successfully removes over 68% of the potential locations through a histogram-based heuristic. This paper presents FiltPIM, an efficient design of the base-count filter that is based on memristive processing-in-memory. The in-memory design reduces CPU-to-memory data transfer and utilizes both intra-crossbar and inter-crossbar memristive stateful-logic parallelism. The reduction in data transfer and the efficient stateful-logic computation together improve filtering time by 100x compared to a CPU implementation of the filter.
FiltPIM:用于DNA测序的内存过滤器
调整生物体的整个基因组是一项计算密集型任务。预对准滤波器通过过滤潜在的对准位置大大降低了计算复杂度。base-count过滤器通过基于直方图的启发式方法成功地删除了超过68%的潜在位置。FiltPIM是一种基于内存记忆处理的基数计数滤波器的高效设计。内存中的设计减少了cpu到内存的数据传输,并利用了crossbar内部和crossbar之间的记忆状态逻辑并行性。与过滤器的CPU实现相比,数据传输的减少和高效的状态逻辑计算共同将过滤时间缩短了100倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信