Influence of Geometric Parameters on Aerodynamic and Acoustic Performances of Bladeless Fans

Ang Li, Jun Chen, Yangfan Liu, J. Bolton, P. Davies
{"title":"Influence of Geometric Parameters on Aerodynamic and Acoustic Performances of Bladeless Fans","authors":"Ang Li, Jun Chen, Yangfan Liu, J. Bolton, P. Davies","doi":"10.1115/ajkfluids2019-5220","DOIUrl":null,"url":null,"abstract":"\n In recent years, the bladeless fan that does not have visible impellers have been widely applied in household appliances. Since the customers are particularly sensitive to noise and the strength of wind generated by the fan, the aerodynamic and acoustic performances of the fan need to be accurately characterized in the design stage. In this study, computational fluid dynamic (CFD) and computational aeroacoustics (CAA) are applied to investigate the performances of different designs of a bladeless fan model. The influence of four parameters, namely the airfoil selection for cross-section of the wind channel, the slit width, the height of cross-section and the location of the slit, is investigated. The results indicate the streamwise air velocity increases significantly by narrowing the outlet, but the noise level increases simultaneously. In addition, the generated noise increases while the height of fan cross-section increases, and a 4mm height of the cross section is optimal for aerodynamic performance. When the slit is closer to the location of maximum thickness, the performances of the bladeless fan increases. Moreover, the performance is not changed significantly by changing the cross-sectional profile. Finally, the optimal geometric parameters are identified to guide the future design of the bladeless fan.","PeriodicalId":403423,"journal":{"name":"Volume 3A: Fluid Applications and Systems","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3A: Fluid Applications and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ajkfluids2019-5220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In recent years, the bladeless fan that does not have visible impellers have been widely applied in household appliances. Since the customers are particularly sensitive to noise and the strength of wind generated by the fan, the aerodynamic and acoustic performances of the fan need to be accurately characterized in the design stage. In this study, computational fluid dynamic (CFD) and computational aeroacoustics (CAA) are applied to investigate the performances of different designs of a bladeless fan model. The influence of four parameters, namely the airfoil selection for cross-section of the wind channel, the slit width, the height of cross-section and the location of the slit, is investigated. The results indicate the streamwise air velocity increases significantly by narrowing the outlet, but the noise level increases simultaneously. In addition, the generated noise increases while the height of fan cross-section increases, and a 4mm height of the cross section is optimal for aerodynamic performance. When the slit is closer to the location of maximum thickness, the performances of the bladeless fan increases. Moreover, the performance is not changed significantly by changing the cross-sectional profile. Finally, the optimal geometric parameters are identified to guide the future design of the bladeless fan.
几何参数对无叶风扇气动与声学性能的影响
近年来,没有可见叶轮的无叶风机在家用电器中得到了广泛的应用。由于客户对风机产生的噪音和风力强度特别敏感,因此需要在设计阶段对风机的气动性能和声学性能进行准确的表征。本文采用计算流体力学(CFD)和计算气动声学(CAA)技术对某型无叶风机不同设计方案的性能进行了研究。研究了风道截面翼型选择、狭缝宽度、截面高度和狭缝位置4个参数的影响。结果表明,减小出口可显著提高气流速度,但同时噪声水平也有所提高。此外,随着风扇截面高度的增加,产生的噪声也随之增加,截面高度为4mm时气动性能最优。当狭缝越靠近最大厚度位置时,无叶风扇的性能越好。此外,通过改变截面轮廓,性能不会发生显著变化。最后,确定了最优的几何参数,为今后的无叶风机设计提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信