Capturing resource tradeoffs in fair multi-resource allocation

Doron Zarchy, David Hay, Michael Schapira
{"title":"Capturing resource tradeoffs in fair multi-resource allocation","authors":"Doron Zarchy, David Hay, Michael Schapira","doi":"10.1109/INFOCOM.2015.7218479","DOIUrl":null,"url":null,"abstract":"Cloud computing platforms provide computational resources (CPU, storage, etc.) for running users' applications. Often, the same application can be implemented in various ways, each with different resource requirements. Taking advantage of this flexibility when allocating resources to users can both greatly benefit users and lead to much better global resource utilization. We develop a framework for fair resource allocation that captures such implementation tradeoffs by allowing users to submit multiple “resource demands”. We present and analyze two mechanisms for fairly allocating resources in such environments: the Lexicographically-Max-Min-Fair (LMMF) mechanism and the Nash-Bargaining (NB) mechanism. We prove that NB has many desirable properties, including Pareto optimality and envy freeness, in a broad variety of environments whereas the seemingly less appealing LMMF fares better, and is even immune to manipulations, in restricted settings of interest.","PeriodicalId":342583,"journal":{"name":"2015 IEEE Conference on Computer Communications (INFOCOM)","volume":"633 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Conference on Computer Communications (INFOCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOM.2015.7218479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Cloud computing platforms provide computational resources (CPU, storage, etc.) for running users' applications. Often, the same application can be implemented in various ways, each with different resource requirements. Taking advantage of this flexibility when allocating resources to users can both greatly benefit users and lead to much better global resource utilization. We develop a framework for fair resource allocation that captures such implementation tradeoffs by allowing users to submit multiple “resource demands”. We present and analyze two mechanisms for fairly allocating resources in such environments: the Lexicographically-Max-Min-Fair (LMMF) mechanism and the Nash-Bargaining (NB) mechanism. We prove that NB has many desirable properties, including Pareto optimality and envy freeness, in a broad variety of environments whereas the seemingly less appealing LMMF fares better, and is even immune to manipulations, in restricted settings of interest.
在公平的多资源分配中获取资源权衡
云计算平台为用户的应用运行提供计算资源(CPU、存储等)。通常,同一个应用程序可以以各种方式实现,每种方式都有不同的资源需求。在向用户分配资源时利用这种灵活性,既可以极大地使用户受益,又可以更好地利用全局资源。我们开发了一个公平资源分配的框架,通过允许用户提交多个“资源需求”来捕获这种实现权衡。我们提出并分析了在这种环境中公平分配资源的两种机制:词典编纂最大最小公平(LMMF)机制和纳什议价(NB)机制。我们证明了NB在各种各样的环境中具有许多理想的特性,包括帕累托最优性和嫉妒自由,而看似不那么吸引人的LMMF在有限的兴趣设置中表现得更好,甚至不受操纵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信