HWE: Hybrid Word Embeddings For Text Classification

Xuebo Song, P. Srimani, James Ze Wang
{"title":"HWE: Hybrid Word Embeddings For Text Classification","authors":"Xuebo Song, P. Srimani, James Ze Wang","doi":"10.1145/3342827.3342837","DOIUrl":null,"url":null,"abstract":"Text classification is one of the most important tasks in natural language processing and information retrieval due to the increasing availability of documents in digital form and the ensuing need to access them in flexible ways. By assigning documents to labeled classes, text classification can reduce the search space and expedite the process of retrieving relevant documents. In this paper, we propose a novel text representation method, Hybrid Word Embeddings (HWE), which combines semantic information obtained fromWord- Net and contextual information extracted from text documents to provide concise and accurate representations of text documents. The proposed HWE method can improve the efficiency of deriving word semantics from text by taking advantage of the semantic relationships extracted from WordNet with less training corpus. Experimental study on classification of documents shows that the proposed HWE outperforms existing methods, including Doc2Vec and Word2Vec, in terms of classification accuracy, recall, precision, etc.","PeriodicalId":254461,"journal":{"name":"Proceedings of the 2019 3rd International Conference on Natural Language Processing and Information Retrieval","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 3rd International Conference on Natural Language Processing and Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3342827.3342837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Text classification is one of the most important tasks in natural language processing and information retrieval due to the increasing availability of documents in digital form and the ensuing need to access them in flexible ways. By assigning documents to labeled classes, text classification can reduce the search space and expedite the process of retrieving relevant documents. In this paper, we propose a novel text representation method, Hybrid Word Embeddings (HWE), which combines semantic information obtained fromWord- Net and contextual information extracted from text documents to provide concise and accurate representations of text documents. The proposed HWE method can improve the efficiency of deriving word semantics from text by taking advantage of the semantic relationships extracted from WordNet with less training corpus. Experimental study on classification of documents shows that the proposed HWE outperforms existing methods, including Doc2Vec and Word2Vec, in terms of classification accuracy, recall, precision, etc.
用于文本分类的混合词嵌入
文本分类是自然语言处理和信息检索中最重要的任务之一,因为数字形式的文档越来越多,并且需要以灵活的方式访问它们。通过将文档分配给有标记的类,文本分类可以减少搜索空间并加快检索相关文档的过程。本文提出了一种新的文本表示方法——混合词嵌入(Hybrid Word Embeddings, HWE),该方法将从Word- Net中获取的语义信息与从文本文档中提取的上下文信息相结合,以提供简洁准确的文本文档表示。该方法利用从WordNet中提取的语义关系,利用较少的训练语料库,提高了从文本中提取词语义的效率。对文档分类的实验研究表明,本文提出的HWE在分类准确率、查全率、查准率等方面都优于现有的Doc2Vec和Word2Vec方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信