Towards Bayesian Filtering on Restricted Support

L. Pavelková, M. Kárný, V. Šmídl
{"title":"Towards Bayesian Filtering on Restricted Support","authors":"L. Pavelková, M. Kárný, V. Šmídl","doi":"10.1109/NSSPW.2006.4378817","DOIUrl":null,"url":null,"abstract":"Linear state-space model with uniformly distributed innovations is considered. Its state and parameters are estimated under hard physical bounds. Off-line maximum a posteriori probability estimation reduces to linear programming. No approximation is required for sole estimation of either model parameters or states. The noise bounds are estimated in both cases. The algorithm is extended to: (i) on-line mode by estimating within a sliding window, and (ii) joint state and parameter estimation. This approach may be used as a starting point for full Bayesian treatment of distributions with restricted support.","PeriodicalId":388611,"journal":{"name":"2006 IEEE Nonlinear Statistical Signal Processing Workshop","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Nonlinear Statistical Signal Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSPW.2006.4378817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Linear state-space model with uniformly distributed innovations is considered. Its state and parameters are estimated under hard physical bounds. Off-line maximum a posteriori probability estimation reduces to linear programming. No approximation is required for sole estimation of either model parameters or states. The noise bounds are estimated in both cases. The algorithm is extended to: (i) on-line mode by estimating within a sliding window, and (ii) joint state and parameter estimation. This approach may be used as a starting point for full Bayesian treatment of distributions with restricted support.
受限支持下贝叶斯滤波研究
考虑具有均匀分布创新的线性状态空间模型。在硬物理边界下估计其状态和参数。离线最大后验概率估计简化为线性规划。对模型参数或状态的单独估计不需要近似值。在这两种情况下都估计了噪声边界。将该算法扩展到(i)滑动窗口内估计的在线模式和(ii)联合状态和参数估计。这种方法可以作为对受限支持分布进行完全贝叶斯处理的起点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信