Zhen Ni, Guyue Liu, Dennis Afanasev, Timothy Wood, Jinho Hwang
{"title":"Advancing Network Function Virtualization Platforms with Programmable NICs","authors":"Zhen Ni, Guyue Liu, Dennis Afanasev, Timothy Wood, Jinho Hwang","doi":"10.1109/LANMAN.2019.8847032","DOIUrl":null,"url":null,"abstract":"Network Function Virtualization seeks to run high performance middleboxes in a flexible, more configurable software environment. Even with advances such as kernel bypass and zero-copy IO, middlebox platforms still struggle to meet stringent throughput and latency requirements. To achieve line rates as network bandwidths rise, these platforms often must make tradeoffs such as inefficiently dedicating more CPU cores or weakening security and isolation properties. In this paper we explore how advances in programmable “smart NICs” can be leveraged by software middlebox platforms to improve performance, resource efficiency, and security. Our evaluation shows several use cases for smart NICs, which improve performance significantly while reducing resource consumption and providing strong isolation.","PeriodicalId":214356,"journal":{"name":"2019 IEEE International Symposium on Local and Metropolitan Area Networks (LANMAN)","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Local and Metropolitan Area Networks (LANMAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LANMAN.2019.8847032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Network Function Virtualization seeks to run high performance middleboxes in a flexible, more configurable software environment. Even with advances such as kernel bypass and zero-copy IO, middlebox platforms still struggle to meet stringent throughput and latency requirements. To achieve line rates as network bandwidths rise, these platforms often must make tradeoffs such as inefficiently dedicating more CPU cores or weakening security and isolation properties. In this paper we explore how advances in programmable “smart NICs” can be leveraged by software middlebox platforms to improve performance, resource efficiency, and security. Our evaluation shows several use cases for smart NICs, which improve performance significantly while reducing resource consumption and providing strong isolation.