A method for error rejection in multiple classifier systems

G. Fumera, F. Roli, G. Vernazza
{"title":"A method for error rejection in multiple classifier systems","authors":"G. Fumera, F. Roli, G. Vernazza","doi":"10.1109/ICIAP.2001.957051","DOIUrl":null,"url":null,"abstract":"In the literature, the introduction of the reject option in multiple classifier systems has been analysed only from the experimental point of view. Following a first theoretical analysis provided by the authors, we analyse, within the framework of the minimum risk theory, the problem of finding the best error-reject trade-off achievable by a linear combination of a given set of trained classifiers. An algorithm for computing the parameters of the linear combination and of the reject rule is then proposed. Experimental results on two data sets of remote-sensing images are reported.","PeriodicalId":365627,"journal":{"name":"Proceedings 11th International Conference on Image Analysis and Processing","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 11th International Conference on Image Analysis and Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAP.2001.957051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In the literature, the introduction of the reject option in multiple classifier systems has been analysed only from the experimental point of view. Following a first theoretical analysis provided by the authors, we analyse, within the framework of the minimum risk theory, the problem of finding the best error-reject trade-off achievable by a linear combination of a given set of trained classifiers. An algorithm for computing the parameters of the linear combination and of the reject rule is then proposed. Experimental results on two data sets of remote-sensing images are reported.
多分类器系统的误差抑制方法
在文献中,多分类器系统中拒绝选项的引入仅从实验的角度进行了分析。在作者提供的第一个理论分析之后,我们在最小风险理论的框架内分析了通过给定一组经过训练的分类器的线性组合找到最佳错误拒绝权衡的问题。提出了一种计算线性组合参数和抑制规则参数的算法。报道了两组遥感影像的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信