Upper Limb Multi-Joint Angle Estimation Based on Multichannel sEMG Signals Using Elman Neural Network

Yongbai Liu, Gang-Yi Wang, Zhenda Tian, Keping Liu, Zhongbo Sun
{"title":"Upper Limb Multi-Joint Angle Estimation Based on Multichannel sEMG Signals Using Elman Neural Network","authors":"Yongbai Liu, Gang-Yi Wang, Zhenda Tian, Keping Liu, Zhongbo Sun","doi":"10.1109/RCAR54675.2022.9872197","DOIUrl":null,"url":null,"abstract":"Continuous motion angle estimation based on surface electromyography (sEMG) signals is a significant part of human active motion intention recognition, which plays an crucial effect in the aspect of natural human-robot interaction and rehabilitation therapy. In this paper, to predict the upper limb multi-joint angle based on multichannel sEMG signals, the Elman neural network model (ELNN) is applied and investigated to estimate upper limb multi-joint motion angle from multichannel sEMG signals under different motion modes of the upper limbs. Specifically, the sEMG signals of anterior deltoid (AD), posterior deltoid (PD), biceps brachii (BB), triceps brachii (TB), extensor carpi radialis (ECR) and flexor carpi radialis (FCR) will be collected and preprocessed, then, the ELNN model based on multichannel sEMG signals is employed to predict the multi-joint motion angles of the upper limbs including shoulder, elbow and wrist. Theoretical analysis, experimental results and root-mean-square error (RMSE) analysis indicate that the presented ELNN model has better prediction accuracy and dynamic characteristics than BP network in continuous estimation of upper limb multi-joint motion angle.","PeriodicalId":304963,"journal":{"name":"2022 IEEE International Conference on Real-time Computing and Robotics (RCAR)","volume":"563 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Real-time Computing and Robotics (RCAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RCAR54675.2022.9872197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Continuous motion angle estimation based on surface electromyography (sEMG) signals is a significant part of human active motion intention recognition, which plays an crucial effect in the aspect of natural human-robot interaction and rehabilitation therapy. In this paper, to predict the upper limb multi-joint angle based on multichannel sEMG signals, the Elman neural network model (ELNN) is applied and investigated to estimate upper limb multi-joint motion angle from multichannel sEMG signals under different motion modes of the upper limbs. Specifically, the sEMG signals of anterior deltoid (AD), posterior deltoid (PD), biceps brachii (BB), triceps brachii (TB), extensor carpi radialis (ECR) and flexor carpi radialis (FCR) will be collected and preprocessed, then, the ELNN model based on multichannel sEMG signals is employed to predict the multi-joint motion angles of the upper limbs including shoulder, elbow and wrist. Theoretical analysis, experimental results and root-mean-square error (RMSE) analysis indicate that the presented ELNN model has better prediction accuracy and dynamic characteristics than BP network in continuous estimation of upper limb multi-joint motion angle.
基于多通道表面肌电信号的Elman神经网络上肢多关节角度估计
基于表面肌电信号的连续运动角估计是人类主动运动意图识别的重要组成部分,在人机自然交互和康复治疗方面具有重要作用。为了基于多通道表面肌电信号预测上肢多关节角度,本文应用Elman神经网络模型(ELNN)从不同上肢运动模式下的多通道表面肌电信号估计上肢多关节运动角度。具体而言,采集三角前肌(AD)、三角后肌(PD)、肱二头肌(BB)、肱三头肌(TB)、桡侧腕伸肌(ECR)和桡侧腕屈肌(FCR)的肌电信号并进行预处理,利用基于多通道肌电信号的ELNN模型预测肩、肘、腕等上肢的多关节运动角度。理论分析、实验结果和均方根误差(RMSE)分析表明,ELNN模型在连续估计上肢多关节运动角方面具有比BP网络更好的预测精度和动态特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信