Bearing estimation using Hopfield neural network

S. Park
{"title":"Bearing estimation using Hopfield neural network","authors":"S. Park","doi":"10.1109/SSST.1990.138186","DOIUrl":null,"url":null,"abstract":"A neural network algorithm for bearing estimation is introduced. It utilizes a basic and proven property of Hopfield neural networks, i.e. the guaranteed convergence to a local minimum of the Lyapunov energy function. Unlike the previous methods, the new method estimates the in-phase and quadratic components separately and in a parallel manner and combines them to estimate the bearings of plane waves to an array. The connection parameters of the neural networks are calculated for both components with a significant reduction in computation in comparison with the previous methods. Furthermore, the new method is able to estimate the actual magnitude of each bearing component, rather than just its presence. This is accomplished by using the 1984 Hopfield model rather than the 1982 model, as opposed to the previous methods.<<ETX>>","PeriodicalId":201543,"journal":{"name":"[1990] Proceedings. The Twenty-Second Southeastern Symposium on System Theory","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1990] Proceedings. The Twenty-Second Southeastern Symposium on System Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSST.1990.138186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

A neural network algorithm for bearing estimation is introduced. It utilizes a basic and proven property of Hopfield neural networks, i.e. the guaranteed convergence to a local minimum of the Lyapunov energy function. Unlike the previous methods, the new method estimates the in-phase and quadratic components separately and in a parallel manner and combines them to estimate the bearings of plane waves to an array. The connection parameters of the neural networks are calculated for both components with a significant reduction in computation in comparison with the previous methods. Furthermore, the new method is able to estimate the actual magnitude of each bearing component, rather than just its presence. This is accomplished by using the 1984 Hopfield model rather than the 1982 model, as opposed to the previous methods.<>
基于Hopfield神经网络的方位估计
介绍了一种用于方位估计的神经网络算法。它利用了Hopfield神经网络的基本特性,即保证收敛到Lyapunov能量函数的局部最小值。与以往的方法不同,新方法分别以并行的方式估计同相分量和二次分量,并将它们结合起来估计平面波对阵列的方位。神经网络的连接参数分别计算两个分量,与之前的方法相比,计算量显著减少。此外,新方法能够估计每个轴承分量的实际大小,而不仅仅是它的存在。这是通过使用1984年的Hopfield模型而不是1982年的模型来实现的,这与之前的方法相反。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信