{"title":"Minimal Dissipation Processes in Irreversible Thermodynamics and Their Applications","authors":"M. A. Zaeva, A. M. Tsirlin","doi":"10.5772/INTECHOPEN.84703","DOIUrl":null,"url":null,"abstract":"It is known that the maximum efficiency of conversion of thermal energy into mechanical work or separation work is achieved in reversible processes. If the intensity of the target flux is set, the processes in the thermodynamic system are irreversible. In this case, the role of reversible processes is played by the processes of minimal dissipation. The review presents the derivation of conditions for minimum dissipation in general form and their specification for heat and mass transfer processes with arbitrary dynamics. It is shown how these conditions follow the solution of problems on the optimal organization of two-flux and multiflux heat exchange. The algorithm for the synthesis of heat exchange systems with given water equivalents and the phase state of the flows is described. The form of the region of realizability of systems using thermal energy and the problem of choosing the order of separation of multicomponent mixtures with the minimum specific heat consumption are considered. It is shown that the efficiency of the rectification processes in the marginal productivity mode monotonously depends on the reversible efficiency, which makes it possible to ignore irreversible factors for choosing the order of separation in this mode.","PeriodicalId":321588,"journal":{"name":"Heat and Mass Transfer - Advances in Science and Technology Applications","volume":"224 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat and Mass Transfer - Advances in Science and Technology Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.84703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
It is known that the maximum efficiency of conversion of thermal energy into mechanical work or separation work is achieved in reversible processes. If the intensity of the target flux is set, the processes in the thermodynamic system are irreversible. In this case, the role of reversible processes is played by the processes of minimal dissipation. The review presents the derivation of conditions for minimum dissipation in general form and their specification for heat and mass transfer processes with arbitrary dynamics. It is shown how these conditions follow the solution of problems on the optimal organization of two-flux and multiflux heat exchange. The algorithm for the synthesis of heat exchange systems with given water equivalents and the phase state of the flows is described. The form of the region of realizability of systems using thermal energy and the problem of choosing the order of separation of multicomponent mixtures with the minimum specific heat consumption are considered. It is shown that the efficiency of the rectification processes in the marginal productivity mode monotonously depends on the reversible efficiency, which makes it possible to ignore irreversible factors for choosing the order of separation in this mode.