A new expandable 2D systolic array for DFT computation based on symbiosis of 1D arrays

S. He, M. Torkelson
{"title":"A new expandable 2D systolic array for DFT computation based on symbiosis of 1D arrays","authors":"S. He, M. Torkelson","doi":"10.1109/ICAPP.1995.472165","DOIUrl":null,"url":null,"abstract":"A new expandable 2-dimensional systolic array consisting of N homogeneous processing elements in a rectangular structure to compute DFT is proposed. A DFT of size N=M/sup 2/ can be computed in 2M steps of pipelined operations, achieving the optimal area-time complexity of AT/sup 2/=O(N/sup 2/). The orthogonal pipelining of the processing is obtained by exploiting the symbiosis between 1-dimensional systolic arrays of H.T. Kung (1980) and L.W. Chang and M.Y. Chen (1988). Compared with another 2D array based on \"sandwiched\" triple matrix product, the presented approach integrates the twiddle factor multiplication into the row transform. This not only reduces computational complexity and the size of coefficient matrix, but also eliminates the twiddle factor preloading procedure. DFT of size 2/sup L/N can be readily computed with 2/sup L/ N-size arrays abutted together. VHDL modules have been written and successfully simulated for the proposed architecture.<<ETX>>","PeriodicalId":448130,"journal":{"name":"Proceedings 1st International Conference on Algorithms and Architectures for Parallel Processing","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1st International Conference on Algorithms and Architectures for Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAPP.1995.472165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

A new expandable 2-dimensional systolic array consisting of N homogeneous processing elements in a rectangular structure to compute DFT is proposed. A DFT of size N=M/sup 2/ can be computed in 2M steps of pipelined operations, achieving the optimal area-time complexity of AT/sup 2/=O(N/sup 2/). The orthogonal pipelining of the processing is obtained by exploiting the symbiosis between 1-dimensional systolic arrays of H.T. Kung (1980) and L.W. Chang and M.Y. Chen (1988). Compared with another 2D array based on "sandwiched" triple matrix product, the presented approach integrates the twiddle factor multiplication into the row transform. This not only reduces computational complexity and the size of coefficient matrix, but also eliminates the twiddle factor preloading procedure. DFT of size 2/sup L/N can be readily computed with 2/sup L/ N-size arrays abutted together. VHDL modules have been written and successfully simulated for the proposed architecture.<>
基于一维阵列共生的可扩展二维收缩阵列
提出了一种由矩形结构中N个齐次处理单元组成的可扩展二维收缩阵列来计算DFT。一个大小为N=M/sup 2/的DFT可以在流水线作业的2M步中计算,达到AT/sup 2/=O(N/sup 2/)的最优区域时间复杂度。利用龚洪涛(1980)和张立文、陈明义(1988)的一维收缩阵列之间的共生关系,得到了处理的正交流水线。与另一种基于“夹心”三重矩阵积的二维阵列相比,该方法将中间因子乘法集成到行变换中。这不仅降低了计算复杂度和系数矩阵的大小,而且消除了中间因子预加载过程。2/sup L/N大小的DFT可以很容易地计算2/sup L/N大小的数组在一起。针对所提出的体系结构编写了VHDL模块并成功地进行了仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信