Steeler nation, 12th man, and boo birds: Classifying Twitter user interests using time series

Tao Yang, Dongwon Lee, Su Yan
{"title":"Steeler nation, 12th man, and boo birds: Classifying Twitter user interests using time series","authors":"Tao Yang, Dongwon Lee, Su Yan","doi":"10.1145/2492517.2492551","DOIUrl":null,"url":null,"abstract":"The problem of Twitter user classification using the contents of tweets is studied. We generate time series from tweets by exploiting the latent temporal information and solve the classification problem in time series domain. Our approach is inspired by the fact that Twitter users sometimes exhibit the periodicity pattern when they share their activities or express their opinions. We apply our proposed methods to both binary and multi-class classification of sports and political interests of Twitter users and compare the performance against eight conventional classification methods using textual features. Experimental results using 2.56 million tweets show that our best binary and multi-class approaches improve the classification accuracy over the best baseline binary and multi-class approaches by 15% and 142%, respectively.","PeriodicalId":442230,"journal":{"name":"2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013)","volume":"521 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2492517.2492551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

The problem of Twitter user classification using the contents of tweets is studied. We generate time series from tweets by exploiting the latent temporal information and solve the classification problem in time series domain. Our approach is inspired by the fact that Twitter users sometimes exhibit the periodicity pattern when they share their activities or express their opinions. We apply our proposed methods to both binary and multi-class classification of sports and political interests of Twitter users and compare the performance against eight conventional classification methods using textual features. Experimental results using 2.56 million tweets show that our best binary and multi-class approaches improve the classification accuracy over the best baseline binary and multi-class approaches by 15% and 142%, respectively.
钢铁国家,第12个人,和boo birds:使用时间序列对Twitter用户兴趣进行分类
研究了基于推文内容的推特用户分类问题。利用推文的潜在时间信息生成时间序列,解决时间序列域的分类问题。Twitter用户在分享他们的活动或表达他们的观点时,有时会表现出周期性的模式,这一事实启发了我们的方法。我们将我们提出的方法应用于Twitter用户的体育和政治兴趣的二元和多类分类,并将其与使用文本特征的八种传统分类方法的性能进行比较。使用256万条tweet的实验结果表明,我们的最佳二进制和多类方法比最佳基线二进制和多类方法的分类准确率分别提高了15%和142%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信