Spatio-Temporal Detection of Cumulonimbus Clouds in Infrared Satellite Images

Ron Dorfman, Etai Wagner, Almog Lahav, A. Amar, R. Talmon, Yaron Halle
{"title":"Spatio-Temporal Detection of Cumulonimbus Clouds in Infrared Satellite Images","authors":"Ron Dorfman, Etai Wagner, Almog Lahav, A. Amar, R. Talmon, Yaron Halle","doi":"10.1109/ICSEE.2018.8646047","DOIUrl":null,"url":null,"abstract":"In this paper, we address the problem of Cumulonimbus (Cb) cloud detection from Infrared (IR) satellite images. The detection of such storm clouds is of high importance since they pose extreme danger to aviation. We present a joint spatio-temporal detection method that exploits the distinct spatial characteristics of Cb clouds as well as their prototypical evolution over time. The presented method is unsupervised and does not require labeled data or predefined spatial handcrafted features, such as particular shapes, temperatures, textures, and gradients. We demonstrate the performance of the proposed method on several sequences of IR satellite images taken from the middle east region.","PeriodicalId":254455,"journal":{"name":"2018 IEEE International Conference on the Science of Electrical Engineering in Israel (ICSEE)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on the Science of Electrical Engineering in Israel (ICSEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSEE.2018.8646047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we address the problem of Cumulonimbus (Cb) cloud detection from Infrared (IR) satellite images. The detection of such storm clouds is of high importance since they pose extreme danger to aviation. We present a joint spatio-temporal detection method that exploits the distinct spatial characteristics of Cb clouds as well as their prototypical evolution over time. The presented method is unsupervised and does not require labeled data or predefined spatial handcrafted features, such as particular shapes, temperatures, textures, and gradients. We demonstrate the performance of the proposed method on several sequences of IR satellite images taken from the middle east region.
红外卫星图像中积雨云的时空探测
本文研究了利用红外卫星图像检测积雨云的问题。探测这种风暴云是非常重要的,因为它们对航空构成了极大的危险。我们提出了一种联合时空检测方法,该方法利用了Cb云的独特空间特征及其随时间的典型演化。所提出的方法是无监督的,不需要标记数据或预定义的空间手工特征,如特定的形状、温度、纹理和梯度。我们对中东地区的红外卫星图像序列进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信