V. Levandovskyy, C. Eder, Andreas Steenpaß, Simon Schmidt, J. Schanz, Moritz Weber
{"title":"Existence of Quantum Symmetries for Graphs on Up to Seven Vertices: A Computer based Approach","authors":"V. Levandovskyy, C. Eder, Andreas Steenpaß, Simon Schmidt, J. Schanz, Moritz Weber","doi":"10.1145/3476446.3535481","DOIUrl":null,"url":null,"abstract":"The symmetries of a finite graph are described by its automorphism group; in the setting of Woronowicz's quantum groups, a notion of a quantum automorphism group has been defined by Banica capturing the quantum symmetries of the graph. In general, there are more quantum symmetries than symmetries and it is a non-trivial task to determine when this is the case for a given graph: The question is whether or not the associative algebra associated to the quantum automorphism group is commutative. We use noncommutative Gröbner bases in order to tackle this problem; the implementation uses Gap and Singular:Letterplace. We determine the existence of quantum symmetries for all connected, undirected graphs without multiple edges and without self-edges, for up to seven vertices. As an outcome, we infer within our regime that a classical automorphism group of order one or two is an obstruction for the existence of quantum symmetries.","PeriodicalId":130499,"journal":{"name":"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3476446.3535481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
The symmetries of a finite graph are described by its automorphism group; in the setting of Woronowicz's quantum groups, a notion of a quantum automorphism group has been defined by Banica capturing the quantum symmetries of the graph. In general, there are more quantum symmetries than symmetries and it is a non-trivial task to determine when this is the case for a given graph: The question is whether or not the associative algebra associated to the quantum automorphism group is commutative. We use noncommutative Gröbner bases in order to tackle this problem; the implementation uses Gap and Singular:Letterplace. We determine the existence of quantum symmetries for all connected, undirected graphs without multiple edges and without self-edges, for up to seven vertices. As an outcome, we infer within our regime that a classical automorphism group of order one or two is an obstruction for the existence of quantum symmetries.