Perturbed segmented domain collocation Tau-method for the numerical solution of Second Order Boundary Value problems

O. A. Taiwo, A. Olagunju
{"title":"Perturbed segmented domain collocation Tau-method for the numerical solution of Second Order Boundary Value problems","authors":"O. A. Taiwo, A. Olagunju","doi":"10.4314/JONAMP.V10I1.40137","DOIUrl":null,"url":null,"abstract":"This paper concerns the numerical solution of second order boundary value problems using a Perturbed segmented domain collocation-Tau method. The entire interval for which the problem is defined is partitioned into two segments and the solution technique is demonstrated on each of the segments. The Chebyshev polynomials shifted as the case may be, into a given interval are used as a basis for a collocation solution via the perturbed collocation method for each segment. For a given problem two different solutions are obtained, which are valid for different intervals within the domain. Numerical examples are given to illustrate the efficiency, accuracy and computational cost of the method. Journal of the Nigerian Association of Mathematical Physics Vol. 10 2006: pp. 293-298","PeriodicalId":402697,"journal":{"name":"Journal of the Nigerian Association of Mathematical Physics","volume":"160 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Nigerian Association of Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4314/JONAMP.V10I1.40137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper concerns the numerical solution of second order boundary value problems using a Perturbed segmented domain collocation-Tau method. The entire interval for which the problem is defined is partitioned into two segments and the solution technique is demonstrated on each of the segments. The Chebyshev polynomials shifted as the case may be, into a given interval are used as a basis for a collocation solution via the perturbed collocation method for each segment. For a given problem two different solutions are obtained, which are valid for different intervals within the domain. Numerical examples are given to illustrate the efficiency, accuracy and computational cost of the method. Journal of the Nigerian Association of Mathematical Physics Vol. 10 2006: pp. 293-298
二阶边值问题数值解的扰动分割域配置tau法
本文研究了二阶边值问题的微扰分割域配位方法的数值解。将问题定义的整个区间划分为两个区间,并在每个区间上演示解决方法。将切比雪夫多项式根据具体情况移到给定区间内,通过摄动配置法对每一段进行配置求解。对于给定的问题,可以得到两种不同的解,这两种解在不同的区间内是有效的。数值算例说明了该方法的效率、准确性和计算量。尼日利亚数学物理协会杂志2006年第10卷:293-298页
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信