Long-term Tracker with Adaptive Occlusion and Recovery Judgment

Ying Mi, Chan Liu, Chaohui Wang, Xiangyang Yue, Xiaohan Zhao, Lu Chen
{"title":"Long-term Tracker with Adaptive Occlusion and Recovery Judgment","authors":"Ying Mi, Chan Liu, Chaohui Wang, Xiangyang Yue, Xiaohan Zhao, Lu Chen","doi":"10.1109/ICUS55513.2022.9986584","DOIUrl":null,"url":null,"abstract":"Compared with a short-term task, long-term tracking has received more attention and research in recent years. Long-term tracking is more challenging because it needs to solve two difficult problems: when to update and how to update our model. Many outstanding short-term tracking methods update frame by frame or manually set the threshold to judge if the tracker should be updated, but when the target is blocked or escapes from the field of view, it is easy to get and update wrong samples, resulting in model pollution and drift. Not only that, but due to the lack of a re-detection mechanism, it is difficult for these short-term tracking methods to recover once the target is lost (especially when the target reappears from another location). In this work, we propose a high-speed long-term tracker with adaptive occlusion and recovery judgment (LT-AOR), which comprehensively judge the update chance of the tracker through the discrimination information and appearance information, and re-detects the target in a simplified way to achieve stable tracking in the case of target occlusion and loss.","PeriodicalId":345773,"journal":{"name":"2022 IEEE International Conference on Unmanned Systems (ICUS)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Unmanned Systems (ICUS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUS55513.2022.9986584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Compared with a short-term task, long-term tracking has received more attention and research in recent years. Long-term tracking is more challenging because it needs to solve two difficult problems: when to update and how to update our model. Many outstanding short-term tracking methods update frame by frame or manually set the threshold to judge if the tracker should be updated, but when the target is blocked or escapes from the field of view, it is easy to get and update wrong samples, resulting in model pollution and drift. Not only that, but due to the lack of a re-detection mechanism, it is difficult for these short-term tracking methods to recover once the target is lost (especially when the target reappears from another location). In this work, we propose a high-speed long-term tracker with adaptive occlusion and recovery judgment (LT-AOR), which comprehensively judge the update chance of the tracker through the discrimination information and appearance information, and re-detects the target in a simplified way to achieve stable tracking in the case of target occlusion and loss.
具有自适应遮挡和恢复判断的长期跟踪器
与短期任务相比,长期跟踪近年来受到了更多的关注和研究。长期跟踪更具挑战性,因为它需要解决两个难题:何时更新以及如何更新我们的模型。许多优秀的短期跟踪方法是逐帧更新或手动设置阈值来判断跟踪器是否需要更新,但当目标被遮挡或逃离视野时,容易获取和更新错误的样本,导致模型污染和漂移。不仅如此,由于缺乏重新检测机制,一旦目标丢失(特别是当目标从另一个位置重新出现时),这些短期跟踪方法很难恢复。在这项工作中,我们提出了一种具有自适应遮挡和恢复判断的高速长期跟踪器(LT-AOR),它通过识别信息和外观信息综合判断跟踪器的更新机会,并以简化的方式重新检测目标,从而在目标遮挡和丢失的情况下实现稳定跟踪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信