Content-based image retrieval using local texture-based color histogram

Bingfei Nan, Ye Xu, Zhichun Mu, Long Chen
{"title":"Content-based image retrieval using local texture-based color histogram","authors":"Bingfei Nan, Ye Xu, Zhichun Mu, Long Chen","doi":"10.1109/CYBConf.2015.7175967","DOIUrl":null,"url":null,"abstract":"This paper presents a novel image feature representation method, called local texture-based color histogram (LTCH), for content-based image retrieval. The LTCH can describe the color distribution under a mask, which is defined as a micro-structure image with a near-uniform texture. The near-uniform texture is exacted by center symmetric local trinary pattern (CS-LTP) and micro-structure map. The CS-LTP is coding on a quantized HSV image, and the micro-structure map is defined with the same as CS-LTP code. The LTCH can be considered as a novel visual attribute descriptor combining local texture, color and spatial layout, without any image segmentation and model training. The proposed LTCH method is evaluated on Corel-1000 database and Corel-5000 database with the standard performance evaluation method, for image retrieval. The experimental results demonstrate that the proposed method has a better performance than representative image feature descriptors, such as color difference histogram (CDH), microstructure descriptor (MSD), multi-texton histogram (MTH) and structure elements' descriptor (SED).","PeriodicalId":177233,"journal":{"name":"2015 IEEE 2nd International Conference on Cybernetics (CYBCONF)","volume":"151 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 2nd International Conference on Cybernetics (CYBCONF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBConf.2015.7175967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper presents a novel image feature representation method, called local texture-based color histogram (LTCH), for content-based image retrieval. The LTCH can describe the color distribution under a mask, which is defined as a micro-structure image with a near-uniform texture. The near-uniform texture is exacted by center symmetric local trinary pattern (CS-LTP) and micro-structure map. The CS-LTP is coding on a quantized HSV image, and the micro-structure map is defined with the same as CS-LTP code. The LTCH can be considered as a novel visual attribute descriptor combining local texture, color and spatial layout, without any image segmentation and model training. The proposed LTCH method is evaluated on Corel-1000 database and Corel-5000 database with the standard performance evaluation method, for image retrieval. The experimental results demonstrate that the proposed method has a better performance than representative image feature descriptors, such as color difference histogram (CDH), microstructure descriptor (MSD), multi-texton histogram (MTH) and structure elements' descriptor (SED).
基于局部纹理的颜色直方图的基于内容的图像检索
针对基于内容的图像检索,提出了一种基于局部纹理的颜色直方图(LTCH)的图像特征表示方法。LTCH可以描述掩模下的颜色分布,将其定义为具有近乎均匀纹理的微结构图像。利用中心对称局部三棱图(CS-LTP)和显微结构图获得了接近均匀的纹理。CS-LTP编码在量化的HSV图像上,微观结构图的定义与CS-LTP编码相同。LTCH可以看作是一种结合局部纹理、颜色和空间布局的新型视觉属性描述符,不需要进行图像分割和模型训练。采用标准性能评价方法在Corel-1000数据库和Corel-5000数据库上对LTCH方法进行了图像检索。实验结果表明,该方法比色差直方图(CDH)、微观结构描述符(MSD)、多文本直方图(MTH)和结构元素描述符(SED)等代表性图像特征描述符具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信