A dense semantic mapping system based on CRF-RNN network

Jiyu Cheng, Yuxiang Sun, M. Meng
{"title":"A dense semantic mapping system based on CRF-RNN network","authors":"Jiyu Cheng, Yuxiang Sun, M. Meng","doi":"10.1109/ICAR.2017.8023671","DOIUrl":null,"url":null,"abstract":"Geometric structure and appearance information of environments are main outputs of Visual Simultaneous Localization and Mapping (Visual SLAM) systems. They serve as the fundamental knowledge for robotic applications in unknown environments. Nowadays, more and more robotic applications require semantic information in visual maps to achieve better performance. However, most of the current Visual SLAM systems are not equipped with the semantic annotation capability. In order to address this problem, we develop a novel system to build 3-D Visual maps annotated with semantic information in this paper. We employ the CRF-RNN algorithm for semantic segmentation, and integrate the semantic algorithm with ORB-SLAM to achieve the semantic mapping. In order to get real-scale 3-D visual maps, we use the RGB-D data as the input of our system. We test our semantic mapping system with our self-generated RGB-D dataset. The experimental results demonstrate that our system is able to reliably annotate the semantic information in the resulting 3-D point-cloud maps.","PeriodicalId":198633,"journal":{"name":"2017 18th International Conference on Advanced Robotics (ICAR)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 18th International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR.2017.8023671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Geometric structure and appearance information of environments are main outputs of Visual Simultaneous Localization and Mapping (Visual SLAM) systems. They serve as the fundamental knowledge for robotic applications in unknown environments. Nowadays, more and more robotic applications require semantic information in visual maps to achieve better performance. However, most of the current Visual SLAM systems are not equipped with the semantic annotation capability. In order to address this problem, we develop a novel system to build 3-D Visual maps annotated with semantic information in this paper. We employ the CRF-RNN algorithm for semantic segmentation, and integrate the semantic algorithm with ORB-SLAM to achieve the semantic mapping. In order to get real-scale 3-D visual maps, we use the RGB-D data as the input of our system. We test our semantic mapping system with our self-generated RGB-D dataset. The experimental results demonstrate that our system is able to reliably annotate the semantic information in the resulting 3-D point-cloud maps.
基于CRF-RNN网络的密集语义映射系统
环境的几何结构和外观信息是视觉同步定位与制图(Visual SLAM)系统的主要输出。它们是机器人在未知环境中应用的基础知识。如今,越来越多的机器人应用需要视觉地图中的语义信息来获得更好的性能。然而,目前大多数Visual SLAM系统都不具备语义标注能力。为了解决这一问题,本文开发了一种基于语义信息标注的三维视觉地图构建系统。我们采用CRF-RNN算法进行语义分割,并将语义算法与ORB-SLAM相结合,实现语义映射。为了获得真实的三维视觉地图,我们使用RGB-D数据作为系统的输入。我们用自己生成的RGB-D数据集测试语义映射系统。实验结果表明,该系统能够可靠地标注出三维点云图中的语义信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信